Open ghost opened 4 years ago
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import argparse
def args_parser():
parser = argparse.ArgumentParser()
# federated arguments
parser.add_argument('--epochs', type=int, default=10, help="rounds of training")
parser.add_argument('--num_users', type=int, default=100, help="number of users: K")
parser.add_argument('--frac', type=float, default=0.1, help="the fraction of clients: C")
parser.add_argument('--local_ep', type=int, default=5, help="the number of local epochs: E")
parser.add_argument('--local_bs', type=int, default=10, help="local batch size: B")
parser.add_argument('--bs', type=int, default=128, help="test batch size")
parser.add_argument('--lr', type=float, default=0.01, help="learning rate")
parser.add_argument('--momentum', type=float, default=0.5, help="SGD momentum (default: 0.5)")
parser.add_argument('--split', type=str, default='user', help="train-test split type, user or sample")
# model arguments
parser.add_argument('--model', type=str, default='mlp', help='model name')
parser.add_argument('--kernel_num', type=int, default=9, help='number of each kind of kernel')
parser.add_argument('--kernel_sizes', type=str, default='3,4,5',
help='comma-separated kernel size to use for convolution')
parser.add_argument('--norm', type=str, default='batch_norm', help="batch_norm, layer_norm, or None")
parser.add_argument('--num_filters', type=int, default=32, help="number of filters for conv nets")
parser.add_argument('--max_pool', type=str, default='True',
help="Whether use max pooling rather than strided convolutions")
# other arguments
parser.add_argument('--dataset', type=str, default='mnist', help="name of dataset")
parser.add_argument('--iid', action='store_true', help='whether i.i.d or not')
parser.add_argument('--num_classes', type=int, default=10, help="number of classes")
parser.add_argument('--num_channels', type=int, default=3, help="number of channels of imges")
parser.add_argument('--gpu', type=int, default=0, help="GPU ID, -1 for CPU")
parser.add_argument('--stopping_rounds', type=int, default=10, help='rounds of early stopping')
parser.add_argument('--verbose', action='store_true', help='verbose print')
parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)')
parser.add_argument('--all_clients', action='store_true', help='aggregation over all clients')
args = parser.parse_args()
return args
According to the options.py above,
C means "the fraction of clients",
B means "local batch size"
E means "the number of local epochs"
I hope that helps you.
Please tell me What is "the parameters C=0.1, B=10, E=5"? and the "C=0.1, B=10, E=5" which parameters represent in the options.py, Thanks.