thank you for the excellent work! I am trying to generate SHAP values for a model with two input branches: One LSTM branch that ingests sequential data (3D array) and one that ingests non-sequential data (2D array).
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
/tmp/ipykernel_26501/3289302125.py in <module>
----> 1 shap_values = ex.shap_values([X_seq_test[0:10,:,X_seq_idx], X_mom_test[0:10,X_mom_idx]])
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/__init__.py in shap_values(self, X, ranked_outputs, output_rank_order, check_additivity)
122 were chosen as "top".
123 """
--> 124 return self.explainer.shap_values(X, ranked_outputs, output_rank_order, check_additivity=check_additivity)
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py in shap_values(self, X, ranked_outputs, output_rank_order, check_additivity)
306 # run attribution computation graph
307 feature_ind = model_output_ranks[j,i]
--> 308 sample_phis = self.run(self.phi_symbolic(feature_ind), self.model_inputs, joint_input)
309
310 # assign the attributions to the right part of the output arrays
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py in run(self, out, model_inputs, X)
363
364 return final_out
--> 365 return self.execute_with_overridden_gradients(anon)
366
367 def custom_grad(self, op, *grads):
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py in execute_with_overridden_gradients(self, f)
399 # define the computation graph for the attribution values using a custom gradient-like computation
400 try:
--> 401 out = f()
402 finally:
403 # reinstate the backpropagatable check
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py in anon()
359 v = tf.constant(data, dtype=self.model_inputs[i].dtype)
360 inputs.append(v)
--> 361 final_out = out(inputs)
362 tf_execute.record_gradient = tf_backprop._record_gradient
363
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
778 else:
779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
812 # In this case we have not created variables on the first call. So we can
813 # run the first trace but we should fail if variables are created.
--> 814 results = self._stateful_fn(*args, **kwds)
815 if self._created_variables:
816 raise ValueError("Creating variables on a non-first call to a function"
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
2826 """Calls a graph function specialized to the inputs."""
2827 with self._lock:
-> 2828 graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
2829 return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
2830
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3211
3212 self._function_cache.missed.add(call_context_key)
-> 3213 graph_function = self._create_graph_function(args, kwargs)
3214 self._function_cache.primary[cache_key] = graph_function
3215 return graph_function, args, kwargs
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3073 arg_names=arg_names,
3074 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075 capture_by_value=self._capture_by_value),
3076 self._function_attributes,
3077 function_spec=self.function_spec,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
984 _, original_func = tf_decorator.unwrap(python_func)
985
--> 986 func_outputs = python_func(*func_args, **func_kwargs)
987
988 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
598 # __wrapped__ allows AutoGraph to swap in a converted function. We give
599 # the function a weak reference to itself to avoid a reference cycle.
--> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds)
601 weak_wrapped_fn = weakref.ref(wrapped_fn)
602
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
971 except Exception as e: # pylint:disable=broad-except
972 if hasattr(e, "ag_error_metadata"):
--> 973 raise e.ag_error_metadata.to_exception(e)
974 else:
975 raise
AttributeError: in user code:
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py:243 grad_graph *
out = self.model(shap_rAnD)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__ **
outputs = call_fn(inputs, *args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:386 call
inputs, training=training, mask=mask)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph
outputs = node.layer(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/layers/recurrent.py:659 __call__
return super(RNN, self).__call__(inputs, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
outputs = call_fn(inputs, *args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/layers/recurrent_v2.py:1183 call
runtime) = lstm_with_backend_selection(**normal_lstm_kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/layers/recurrent_v2.py:1559 lstm_with_backend_selection
function.register(defun_gpu_lstm, **params)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:3241 register
concrete_func.add_gradient_functions_to_graph()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:2063 add_gradient_functions_to_graph
self._delayed_rewrite_functions.forward_backward())
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:621 forward_backward
forward, backward = self._construct_forward_backward(num_doutputs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:669 _construct_forward_backward
func_graph=backwards_graph)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py:986 func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:659 _backprop_function
src_graph=self._func_graph)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/gradients_util.py:669 _GradientsHelper
lambda: grad_fn(op, *out_grads))
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/gradients_util.py:336 _MaybeCompile
return grad_fn() # Exit early
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/gradients_util.py:669 <lambda>
lambda: grad_fn(op, *out_grads))
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py:371 custom_grad
out = op_handlers[type_name](self, op, *grads) # we cut off the shap_ prefex before the lookup
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py:660 handler
return linearity_with_excluded_handler(input_inds, explainer, op, *grads)
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py:667 linearity_with_excluded_handler
assert not explainer._variable_inputs(op)[i], str(i) + "th input to " + op.name + " cannot vary!"
/opt/conda/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py:220 _variable_inputs
out[i] = t.name in self.between_tensors
AttributeError: 'TFDeep' object has no attribute 'between_tensors'
I am not sure if multi branch network architectures like the one I am using are currently supported. If this is not the case, would you be so kind an point me to a workaround for this problem?
Hi there,
thank you for the excellent work! I am trying to generate SHAP values for a model with two input branches: One LSTM branch that ingests sequential data (3D array) and one that ingests non-sequential data (2D array).
The model builder looks like this:
Training the model works well:
Now, when I try to generate SHAP values I am getting an error related to the dimensionality of the two input arrays:
The last line is throwing the error:
I am not sure if multi branch network architectures like the one I am using are currently supported. If this is not the case, would you be so kind an point me to a workaround for this problem?