Closed stephenturner closed 3 years ago
See footnote on page 5:
Expected cM = min(3560, 4 × max(0, kinship_coeff) × 3560
snp-typing-uas-kinship-estimation-gedmatch-pro-tech-note-vd2020058-a.pdf
library(skater) library(dplyr) dibble(9) %>% mutate(cm=pmin(3560, 4*pmax(0, k)*3560)) #> # A tibble: 11 x 5 #> degree k l u cm #> <int> <dbl> <dbl> <dbl> <dbl> #> 1 0 0.5 0.354 1 3560 #> 2 1 0.25 0.177 0.354 3560 #> 3 2 0.125 0.0884 0.177 1780 #> 4 3 0.0625 0.0442 0.0884 890 #> 5 4 0.0312 0.0221 0.0442 445 #> 6 5 0.0156 0.0110 0.0221 222. #> 7 6 0.00781 0.00552 0.0110 111. #> 8 7 0.00391 0.00276 0.00552 55.6 #> 9 8 0.00195 0.00138 0.00276 27.8 #> 10 9 0.000977 0.000691 0.00138 13.9 #> 11 NA 0 -1 0.000691 0
Estimated cM appear to line up with expected relationship types from shared cM project and AncestryDNA matching white paper.
See footnote on page 5:
snp-typing-uas-kinship-estimation-gedmatch-pro-tech-note-vd2020058-a.pdf
Estimated cM appear to line up with expected relationship types from shared cM project and AncestryDNA matching white paper.