Open chuck-ma opened 3 months ago
Try updating to the new version of nextort. @chuck-ma
@lixiang007666 I will try it. But I use oneflow, because it's faster.
@lixiang007666 I will try it. But I use oneflow, because it's faster.
For the unet architecture series of models, oneflow is currently faster and easier to use.
Nexfort is currently more suitable for DiT. Nexfort backend will continue to be optimized in the future.
@chuck-ma
Anyway to speed up warm up time when using nextort? It seems that it uses only a cpu kernel
It gets errors...
AttributeError: 'ChatGLMModel' object has no attribute '_deployable_module_dpl_graph'
My nexfort version: nexfort 0.1.dev260
It gets errors...
AttributeError: 'ChatGLMModel' object has no attribute '_deployable_module_dpl_graph'
My nexfort version:
nexfort 0.1.dev260
Thanks for finding this issue, I need to try to reproduce it.
@chuck-ma
start_time = time.time()
pipe.text_encoder = pipe.text_encoder.to("cuda")
quantize_text_encoder(pipe.text_encoder.encoder, 4)
torch.cuda.empty_cache()
end_time = time.time()
inference_time = end_time - start_time
logger.info(f"text encoder quantize time: {inference_time:.4f} seconds")
I suggest that you remove the quantize_text_encoder()
lines of code.
If there are still issues, I will continue to follow up.
Anyway to speed up warm up time when using nextort? It seems that it uses only a cpu kernel
@chuck-ma And, for the nexfort backend, the issue of prolonged tuning time after the first compilation can be resolved by using cache.
Warmup time after use cache:
env:
nexfort==0.1.dev261
torch==2.4.0
@chuck-ma
start_time = time.time() pipe.text_encoder = pipe.text_encoder.to("cuda") quantize_text_encoder(pipe.text_encoder.encoder, 4) torch.cuda.empty_cache() end_time = time.time() inference_time = end_time - start_time logger.info(f"text encoder quantize time: {inference_time:.4f} seconds")
I suggest that you remove the
quantize_text_encoder()
lines of code.If there are still issues, I will continue to follow up.
It seems that if i quantize text encoder, it will also speed up generating images, which also saves my cuda memory. I will be appreciate if onediff could support speed up even text encoder is quantized
Your current environment information
PyTorch version: 2.3.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OneFlow version: path: ['/root/miniconda3/lib/python3.10/site-packages/oneflow'], version: 0.9.1.dev20240731+cu118, git_commit: f230775, cmake_build_type: Release, rdma: True, mlir: True, enterprise: False Nexfort version: none OneDiff version: 1.2.1.dev10+g72a11f94 OneDiffX version: unknown version
OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: Could not collect CMake version: version 3.29.5 Libc version: glibc-2.35
Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-78-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 Nvidia driver version: 535.104.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 6 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 80 MiB (64 instances) L3 cache: 108 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected
Versions of relevant libraries: [pip3] diffusers==0.30.0.dev0 [pip3] numpy==1.24.1 [pip3] onnxruntime==1.18.1 [pip3] onnxruntime-gpu==1.18.1 [pip3] torch==2.3.0 [pip3] torchvision==0.18.0 [pip3] transformers==4.41.2 [pip3] triton==2.3.0 [conda] numpy 1.24.1 pypi_0 pypi [conda] torch 2.3.0 pypi_0 pypi [conda] torchvision 0.18.0 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi
🐛 Describe the bug
when compiler is disabled, result looks good:
However, when enable compiler, result looks quite bad: