Open loretoparisi opened 2 months ago
I met completely same problem : 'T5EncoderModel' object has no attribute '_deployable_module_dpl_graph' same Additionally Torch Dynamo metrics
PyTorch version: 2.4.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OneFlow version: path: ['/root/miniforge3/envs/py310-CogVideo/lib/python3.10/site-packages/oneflow'], version: 0.9.1.dev20240923+cu121, git_commit: d23c061, cmake_build_type: Release, rdma: True, mlir: True, enterprise: False
Nexfort version: 0.1.dev271
OneDiff version: 1.2.0
OneDiffX version: 1.2.0
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.31
Python version: 3.10.15 | packaged by conda-forge | (main, Sep 20 2024, 16:37:05) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-5.4.0-26-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.66
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090
GPU 4: NVIDIA GeForce RTX 3090
GPU 5: NVIDIA GeForce RTX 3090
GPU 6: NVIDIA GeForce RTX 3090
GPU 7: NVIDIA GeForce RTX 3090
Nvidia driver version: 525.60.13
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 57 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz
Stepping: 6
Frequency boost: enabled
CPU MHz: 3373.456
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
BogoMIPS: 5600.00
Virtualization: VT-x
L1d cache: 2.3 MiB
L1i cache: 1.5 MiB
L2 cache: 60 MiB
L3 cache: 72 MiB
NUMA node0 CPU(s): 0-23,48-71
NUMA node1 CPU(s): 24-47,72-95
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] diffusers==0.30.3
[pip3] numpy==1.26.0
[pip3] torch==2.4.1
[pip3] torchvision==0.19.1
[pip3] transformers==4.44.2
[pip3] triton==3.0.0
[conda] numpy 1.26.0 pypi_0 pypi
[conda] torch 2.4.1 pypi_0 pypi
[conda] torchvision 0.19.1 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
i noted there two line and add pipe.to("cuda")
# self.pipe.enable_model_cpu_offload()
# self.pipe.enable_sequential_cpu_offload()
the problem disappear @loretoparisi
i noted there two line and add pipe.to("cuda")
# self.pipe.enable_model_cpu_offload() # self.pipe.enable_sequential_cpu_offload()
the problem disappear @loretoparisi
Thanks so basically we have to disable cpu offloading before calling
save_pipe(pipe, dir="cached_pipe", overwrite=True)
Are you still using VAE layer slicing and tiling?
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
and compiled successfully? Thanks!
i tryed use your 'save_pipe(pipe, dir="cached_pipe", overwrite=True)' the problem has appeared again xd i suggest just dont use save_pipe and load_pipe for now.
Your current environment information
🐛 Describe the bug
When attempting to save a
CogVideoXPipeline
using the official demo script modified adding onediffxinstalled as
where the requiremets are
It will fail with an error:
The error was
'T5EncoderModel' object has no attribute '_deployable_module_dpl_graph'
, while the foldercached_pipe
has been created but it is empty.Additionally Torch Dynamo metrics here (at first run before the error)