Closed kujaku11 closed 2 months ago
Moving some methods to MTH5 and mtpy.
aurora.pipelines.run_summary.convert_channel_summary_to_run_summary
mth5.tables.ChannelTable.to_run_summary
run summary
mth5.MTH5.run_summary
mth5.__init__
duration
has_data
aurora.pipelines.run_summary
mtpy.processing.run_summary
df
setter
getter
drop_no_data_rows
False
set_sample_rate
aurora.timeseries.KernelDataset
mtpy.processing
_station_id
_mth5_path
processing_id
input_channels
output_channels
aurora.pipelines.run_summary.RunSummary.check_runs_are_valid()
mth5.timeseries.RunTS
mth5.groups.Run
KernelDataset
RunSummary
mtpy
Moving some methods to MTH5 and mtpy.
aurora.pipelines.run_summary.convert_channel_summary_to_run_summary
tomth5.tables.ChannelTable.to_run_summary
run summary
comes as a DataFrame with duration and there is a convenience property inmth5.MTH5.run_summary
.mth5.__init__
so as to be genericduration
andhas_data
to help with parsing out runs to processaurora.pipelines.run_summary
tomtpy.processing.run_summary
df
setter
[validates the data frame and adds appropriate columns] andgetter
drop_no_data_rows
which useshas_data
column to drop anyFalse
rows.set_sample_rate
to set the sample rate to process and returns a new DataFrame so that you don't have to recompile the run summary from mth5 objects.aurora.timeseries.KernelDataset
tomtpy.processing
_station_id
, local/remote_mth5_path
]processing_id
propertyinput_channels
andoutput_channels
as a propertyaurora.pipelines.run_summary.RunSummary.check_runs_are_valid()
tomth5.timeseries.RunTS
ormth5.groups.Run
Tests
KernelDataset
andRunSummary
tomtpy
in testsKernelDataset
andRunSummary