simplysameer333 / MachineLearning

1 stars 1 forks source link

minist #18

Open simplysameer333 opened 5 years ago

simplysameer333 commented 5 years ago

import tensorflow as tf

print("Version: ", tf.version)

mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28,28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.25), tf.keras.layers.Dense(10, activation='softmax') ])

model.summary()

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10) model.evaluate(x_test, y_test)