Closed peiyang988 closed 5 years ago
Hi @peiyang988
2D cylindrical coordinate (r, z); its difference with the 2D Cartesian is explained here: see, e.g., the difference between the divergence terms, although the gradient terms are identical. 2D radial (r, θ).
Unfortunately, I have not implemented the discretization terms in the 3D spherical coordinate yet, mostly because I never needed it in my work. It can be done relatively easily by modifying the code for the 3D cylindrical terms.
Thanks for your prompt reply. I've got it. 2-D Cylindrical coordinate system is a stretch of the 1-D radial coordinate system in the z direction.
Hello, Thank you for sharing FVTool, I've benefited a lot from it.
After reading some of the codes, I was a little confused by 2-D Cylindrical coordinate system. I know 3-D Cylindrical coordinate system(r, θ, z), but don't know what 2-D Cylindrical means.
If the 2-D Cylindrical coordinate system is based on the r-z plane, what is the difference between it and the 2-D Cartesian coordinate system(x-y)? If the 2-D Cylindrical coordinate system is based on the r-θ plane, what is the difference between it and the 2-D Radial coordinate system(r-θ)?
In addition, can this tool solve equations in 3-D Spherical grids?
I'll appreciate it if you can make me clear about these questions. Thanks!