sisterAn / JavaScript-Algorithms

基础理论+JS框架应用+实践,从0到1构建整个前端算法体系
5.51k stars 634 forks source link

字节&leetcode215:数组中的第K个最大元素 #62

Open sisterAn opened 4 years ago

sisterAn commented 4 years ago

在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:

输入: [3,2,1,5,6,4] 和 k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4

说明:

你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。

附赠leetcode地址:leetcode

sisterAn commented 4 years ago

目前已经刷了两道Topk问题,不过于三种方案:

那么除了这两种方案还有没有其它的方式可解决本题喃?其实还有两种:

接下来一一解答😊

解法一:数组排序,取第 k 个数

最简单

代码实现:

let findKthLargest = function(nums, k) {
    nums.sort((a, b) => b - a);
    return nums[k-1]
};

复杂度分析:

解法二:构造前 k 个最大元素小顶堆,取堆顶

我们也可以通过构造一个前 k 个最大元素小顶堆来解决,小顶堆上的任意节点值都必须小于等于其左右子节点值,即堆顶是最小值。

所以我们可以从数组中取出 k 个元素构造一个小顶堆,然后将其余元素与小顶堆对比,如果大于堆顶则替换堆顶,然后堆化,所有元素遍历完成后,堆中的堆顶即为第 k 个最大值

具体步骤如下:

代码实现:

let findKthLargest = function(nums, k) {
    // 从 nums 中取出前 k 个数,构建一个小顶堆
    let heap = [,], i = 0
    while(i < k) {
       heap.push(nums[i++]) 
    }
    buildHeap(heap, k)

    // 从 k 位开始遍历数组
    for(let i = k; i < nums.length; i++) {
        if(heap[1] < nums[i]) {
            // 替换并堆化
            heap[1] = nums[i]
            heapify(heap, k, 1)
        }
    }

    // 返回堆顶元素
    return heap[1]
};

// 原地建堆,从后往前,自上而下式建小顶堆
let buildHeap = (arr, k) => {
    if(k === 1) return
    // 从最后一个非叶子节点开始,自上而下式堆化
    for(let i = Math.floor(k/2); i>=1 ; i--) {
        heapify(arr, k, i)
    }
}

// 堆化
let heapify = (arr, k, i) => {
    // 自上而下式堆化
    while(true) {
        let minIndex = i
        if(2*i <= k && arr[2*i] < arr[i]) {
            minIndex = 2*i
        }
        if(2*i+1 <= k && arr[2*i+1] < arr[minIndex]) {
            minIndex = 2*i+1
        }
        if(minIndex !== i) {
            swap(arr, i, minIndex)
            i = minIndex
        } else {
            break
        }
    }
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

复杂度分析:

更多堆内容可查看 前端进阶算法9:看完这篇,再也不怕堆排序、Top K、中位数问题面试了

解法三:快速选择(quickselect)算法

无论是排序算法还是构造堆求解 Top k问题,我们都经过的一定量的不必要操作:

快速选择(quickselect)算法与快排思路上相似,我们先看看快排是如何实现的?

快排

快排使用了分治策略的思想,所谓分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

快排的过程简单的说只有三步:

具体按以下步骤实现:

注意这里的基准该如何选择喃?最简单的一种做法是每次都是选择最左边的元素作为基准,但这对几乎已经有序的序列来说,并不是最好的选择,它将会导致算法的最坏表现。还有一种做法,就是选择中间的数或通过 Math.random() 来随机选取一个数作为基准,下面的代码实现就是以随机数作为基准。

代码实现

let quickSort = (arr) => {
  quick(arr, 0 , arr.length - 1)
}

let quick = (arr, left, right) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    if(left < index - 1) {
      quick(arr, left, index - 1)
    }
    if(index < right) {
      quick(arr, index, right)
    }
  }
}

// 一次快排
let partition = (arr, left, right) => {
  // 取中间项为基准
  var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
      i = left,
      j = right
  // 开始调整
  while(i <= j) {

    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i <= j) {
      swap(arr, i, j)
      i += 1
      j -= 1
    }
  }
  return i
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

// 测试
let arr = [1, 3, 2, 5, 4]
quickSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
// 第 2 个最大值
console.log(arr[arr.length - 2])  // 4

快排是从小到大排序,所以第 k 个最大值在 n-k 位置上

复杂度分析

快速选择(quickselect)算法

上面我们实现了快速排序来取第 k 个最大值,其实没必要那么麻烦,我们仅仅需要在每执行一次快排的时候,比较基准值位置是否在 n-k 位置上,如果小于 n-k ,则第 k 个最大值在基准值的右边,我们只需递归快排基准值右边的子序列即可;如果大于 n-k ,则第 k 个最大值在基准值的做边,我们只需递归快排基准值左边的子序列即可;如果等于 n-k ,则第 k 个最大值就是基准值

代码实现:

let findKthLargest = function(nums, k) {
    return quickSelect(nums, nums.length - k)
};

let quickSelect = (arr, k) => {
  return quick(arr, 0 , arr.length - 1, k)
}

let quick = (arr, left, right, k) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    // Top k
    if(k === index) {
        return arr[index]
    } else if(k < index) {
        // Top k 在左边
        return quick(arr, left, index-1, k)
    } else {
        // Top k 在右边
        return quick(arr, index+1, right, k)
    }
  }
  return arr[left]
}

let partition = (arr, left, right) => {
  // 取中间项为基准
  var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
      i = left,
      j = right
  // 开始调整
  while(i < j) {

    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i < j) swap(arr, i, j)

    // 当数组中存在重复数据时,即都为datum,但位置不同
    // 继续递增i,防止死循环
    if(arr[i] === arr[j] && i !== j) {
        i++
    }
  }
  return i
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

复杂度分析:

解法四:中位数的中位数(BFPRT)算法

又称为中位数的中位数算法,它的最坏时间复杂度为 O(n) ,它是由Blum、Floyd、Pratt、Rivest、Tarjan提出。该算法的思想是修改快速选择算法的主元选取方法,提高算法在最坏情况下的时间复杂度。

在BFPTR算法中,仅仅是改变了快速选择(quickselect)算法中 Partion 中的基准值的选取,在快速选择(quickselect)算法中,我们可以选择第一个元素或者最后一个元素作为基准元,优化的可以选择随机一个元素作为基准元,而在 BFPTR 算法中,每次选择五分中位数的中位数作为基准元(也称为主元pivot),这样做的目的就是使得划分比较合理,从而避免了最坏情况的发生。

BFPRT 算法步骤如下:

代码实现:

let findKthLargest = function(nums, k) {
    return nums[bfprt(nums, 0, nums.length - 1, nums.length - k)]
}

let bfprt = (arr, left , right, k) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    // Top k
    if(k === index) {
        return index
    } else if(k < index) {
        // Top k 在左边
        return bfprt(arr, left, index-1, k)
    } else {
        // Top k 在右边
        return bfprt(arr, index+1, right, k)
    }
  }
  return left
}

let partition = (arr, left, right) => {
  // 基准
  var datum = arr[findMid(arr, left, right)],
      i = left,
      j = right
  // 开始调整
  while(i < j) {
    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i < j) swap(arr, i, j)

    // 当数组中存在重复数据时,即都为datum,但位置不同
    // 继续递增i,防止死循环
    if(arr[i] === arr[j] && i !== j) {
        i++
    }
  }
  return i
}

/**
 * 数组 arr[left, right] 每五个元素作为一组,并计算每组的中位数,
 * 最后返回这些中位数的中位数下标(即主元下标)。
 *
 * @attention 末尾返回语句最后一个参数多加一个 1 的作用其实就是向上取整的意思,
 * 这样可以始终保持 k 大于 0。
 */
let findMid = (arr, left, right) => {
    if (right - left < 5)
        return insertSort(arr, left, right);

    let n = left - 1;

    // 每五个作为一组,求出中位数,并把这些中位数全部依次移动到数组左边
    for (let i = left; i + 4 <= right; i += 5)
    {
        let index = insertSort(arr, i, i + 4);
        swap(arr[++n], arr[index]);
    }

    // 利用 bfprt 得到这些中位数的中位数下标(即主元下标)
    return findMid(arr, left, n);
}

/**
 * 对数组 arr[left, right] 进行插入排序,并返回 [left, right]
 * 的中位数。
 */
let insertSort = (arr, left, right) => {
    let temp, j
    for (let i = left + 1; i <= right; i++) {
        temp = arr[i];
        j = i - 1;
        while (j >= left && arr[j] > temp)
        {
            arr[j + 1] = arr[j];
            j--;
        }
        arr[j + 1] = temp;
    }
    return ((right - left) >> 1) + left;
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

复杂度分析:

为什么是5?

在BFPRT算法中,为什么是选5个作为分组?

首先,偶数排除,因为对于奇数来说,中位数更容易计算。

如果选用3,有 ,其操作元素个数还是 n

如果选取7,9或者更大,在插入排序时耗时增加,常数 c 会很大,有些得不偿失。

总结

所以,这里我们总结一下,求topk问题其实并不难,主要有以下几个思路:

leetcode

7777sea commented 4 years ago

面向api开发👿

var findKthLargest = function(nums, k) {
    let arr = nums.sort((a, b) => a - b)
    return arr[arr.length - k]
};
HPYAEyes commented 4 years ago

将数组前k项堆化,构造出小顶堆,堆顶元素与剩余数组中每个元素比较,大于堆顶元素则替换,然后堆化,这样可以保证堆中元素全部大于数组中的元素,则堆顶元素为第k个最大元素

var findKthLargest = function(nums, k) {
  let heap = nums.slice(0, k);
  buildHeap(heap);
  let i = k;
  while (i < nums.length) {
      if (nums[i] > heap[0]) {
          heap[0] = nums[i];
          buildHeap(heap);
      }
      i++;
  }
  return heap[0];
};

function buildHeap(items) {
  for (let i = ~~((items.length - 1) / 2);i >= 0;i--) {
    heapify(items, i);
  }
}

function swap(items, i, j) {
  let temp = items[i];
  items[i] = items[j];
  items[j] = temp;
}

function heapify(items, i) {
  let maxIndex = i;
  while(true) {
    let left = 2 * i + 1;
    let right = left + 1;
    if (left < items.length && items[left] < items[i]) {
      maxIndex = left;
    }
    if (right < items.length && items[right] < items[maxIndex]) {
      maxIndex = right;
    }
    if (maxIndex === i) break;
    swap(items, i, maxIndex);
    i = maxIndex;
  }
}

时间复杂度:O(nlogk) 空间复杂度:O(k)

cutie6 commented 3 years ago

解法一:数组排序,取第 k 个数

最简单

代码实现:

let findKthLargest = function(nums, k) {
    nums.sort((a, b) => b - a);
    return nums[k-1]
};

复杂度分析:

  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(logn)

这里的时间空间复杂度是 js 原生 sort 方法的复杂度么?

TonyZhang1993 commented 10 months ago

解法一:数组排序,取第 k 个数

最简单 代码实现:

let findKthLargest = function(nums, k) {
    nums.sort((a, b) => b - a);
    return nums[k-1]
};

复杂度分析:

  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(logn)

这里的时间空间复杂度是 js 原生 sort 方法的复杂度么?

是的,详见https://github.com/sisterAn/JavaScript-Algorithms/issues/59#issuecomment-638191243