Open CauchyComplete opened 2 years ago
This is my inplemetation of mobilenetv3 modified from this repository.. And the pytorch pretrained model can be download here
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init
class hswish(nn.Module): def forward(self, x): out = x * F.relu6(x + 3, inplace=True) / 6 return out
class hsigmoid(nn.Module): def forward(self, x): out = F.relu6(x + 3, inplace=True) / 6 return out
class SeModule(nn.Module): def init(self, in_size, reduction=4): super(SeModule, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.se = nn.Sequential(
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size // reduction),
nn.ReLU(inplace=True),
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size),
hsigmoid()
)
def forward(self, x):
return x * self.se(x)
class Block(nn.Module): """expand + depthwise + pointwise"""
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
super(Block, self).__init__()
self.stride = stride
self.se = semodule
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(expand_size)
self.nolinear1 = nolinear
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride,
padding=kernel_size // 2, groups=expand_size, bias=False)
self.bn2 = nn.BatchNorm2d(expand_size)
self.nolinear2 = nolinear
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_size)
self.shortcut = nn.Sequential()
if stride == 1 and in_size != out_size:
self.shortcut = nn.Sequential(
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_size),
)
def forward(self, x):
out = self.nolinear1(self.bn1(self.conv1(x)))
out = self.nolinear2(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.se is not None:
out = self.se(out)
out = out + self.shortcut(x) if self.stride == 1 else out
return out
mobilenetv3_settings = { 'small': [[0, 1, 2, 4, 11], [12, 24, 40, 96]], 'large': [[0, 2, 4, 7, 15], [24, 40, 80, 160]], }
class MobileNetV3(nn.Module): def init(self, model_name='large'): super(MobileNetV3, self).init() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.hs1 = hswish()
if model_name == 'small':
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2),
Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2),
Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1),
Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
)
elif model_name == 'large':
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1),
Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2),
Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1),
Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2),
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
Block(3, 40, 240, 80, hswish(), None, 2),
Block(3, 80, 200, 80, hswish(), None, 1),
Block(3, 80, 184, 80, hswish(), None, 1),
Block(3, 80, 184, 80, hswish(), None, 1),
Block(3, 80, 480, 112, hswish(), SeModule(112), 1),
Block(3, 112, 672, 112, hswish(), SeModule(112), 1),
Block(5, 112, 672, 160, hswish(), SeModule(160), 1),
Block(5, 160, 672, 160, hswish(), SeModule(160), 2),
Block(5, 160, 960, 160, hswish(), SeModule(160), 1),
)
else:
raise Exception('not small or large')
self.divs, self.channels = mobilenetv3_settings[model_name]
self.init_params()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
outs = []
out = self.hs1(self.bn1(self.conv1(x)))
for i in range(0, 4):
out = self.bneck[self.divs[i]:self.divs[i + 1]](out)
outs.append(out)
return outs
if name == 'main': model = MobileNetV3('small') model.load_state_dict(torch.load('../../../checkpoints/backbones/mobilenet/mobilenetv3_small.pth', map_location='cpu'), strict=False) model.train() _x = torch.randn(2, 3, 512, 512) _outs = model(_x) for y in _outs: print(y.shape)
This is my inplemetation of mobilenetv3 modified from this repository.. And the pytorch pretrained model can be download here
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init
class hswish(nn.Module): def forward(self, x): out = x * F.relu6(x + 3, inplace=True) / 6 return out
class hsigmoid(nn.Module): def forward(self, x): out = F.relu6(x + 3, inplace=True) / 6 return out
class SeModule(nn.Module): def init(self, in_size, reduction=4): super(SeModule, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.se = nn.Sequential( nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(in_size // reduction), nn.ReLU(inplace=True), nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(in_size), hsigmoid() ) def forward(self, x): return x * self.se(x)
class Block(nn.Module): """expand + depthwise + pointwise"""
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride): super(Block, self).__init__() self.stride = stride self.se = semodule self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(expand_size) self.nolinear1 = nolinear self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=expand_size, bias=False) self.bn2 = nn.BatchNorm2d(expand_size) self.nolinear2 = nolinear self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_size) self.shortcut = nn.Sequential() if stride == 1 and in_size != out_size: self.shortcut = nn.Sequential( nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_size), ) def forward(self, x): out = self.nolinear1(self.bn1(self.conv1(x))) out = self.nolinear2(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) if self.se is not None: out = self.se(out) out = out + self.shortcut(x) if self.stride == 1 else out return out
mobilenetv3_settings = { 'small': [[0, 1, 2, 4, 11], [12, 24, 40, 96]], 'large': [[0, 2, 4, 7, 15], [24, 40, 80, 160]], }
class MobileNetV3(nn.Module): def init(self, model_name='large'): super(MobileNetV3, self).init() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.hs1 = hswish()
if model_name == 'small': self.bneck = nn.Sequential( Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2), Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2), Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1), Block(5, 24, 96, 40, hswish(), SeModule(40), 2), Block(5, 40, 240, 40, hswish(), SeModule(40), 1), Block(5, 40, 240, 40, hswish(), SeModule(40), 1), Block(5, 40, 120, 48, hswish(), SeModule(48), 1), Block(5, 48, 144, 48, hswish(), SeModule(48), 1), Block(5, 48, 288, 96, hswish(), SeModule(96), 2), Block(5, 96, 576, 96, hswish(), SeModule(96), 1), Block(5, 96, 576, 96, hswish(), SeModule(96), 1), ) elif model_name == 'large': self.bneck = nn.Sequential( Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1), Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2), Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1), Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2), Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), Block(3, 40, 240, 80, hswish(), None, 2), Block(3, 80, 200, 80, hswish(), None, 1), Block(3, 80, 184, 80, hswish(), None, 1), Block(3, 80, 184, 80, hswish(), None, 1), Block(3, 80, 480, 112, hswish(), SeModule(112), 1), Block(3, 112, 672, 112, hswish(), SeModule(112), 1), Block(5, 112, 672, 160, hswish(), SeModule(160), 1), Block(5, 160, 672, 160, hswish(), SeModule(160), 2), Block(5, 160, 960, 160, hswish(), SeModule(160), 1), ) else: raise Exception('not small or large') self.divs, self.channels = mobilenetv3_settings[model_name] self.init_params() def init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): outs = [] out = self.hs1(self.bn1(self.conv1(x))) for i in range(0, 4): out = self.bneck[self.divs[i]:self.divs[i + 1]](out) outs.append(out) return outs
if name == 'main': model = MobileNetV3('small') model.load_state_dict(torch.load('../../../checkpoints/backbones/mobilenet/mobilenetv3_small.pth', map_location='cpu'), strict=False) model.train() _x = torch.randn(2, 3, 512, 512) _outs = model(_x) for y in _outs: print(y.shape)
SEModule is wrong!
Hi, When I try to load pretrained weights of MobileNetV3 (either -S or -L) to BiSeNetV1, this error appears.