slds-lmu / lecture_i2ml

I2ML lecture repository
https://slds-lmu.github.io/i2ml/
Creative Commons Attribution 4.0 International
142 stars 79 forks source link

refactoring overview - DONT CLOSE BEFORE SPRINT DONE! #337

Closed berndbischl closed 1 year ago

berndbischl commented 4 years ago

BITTE DIE BEIDEN TOP POSTS EDITIEREN WENN MAN WAS ÄNDERT !!!

IST ZUSTAND

Day1:

TERMINOLOGY: (14 slides, d1slot1 teil 1) Definition ML Data: Features, Targets Tasks Supervised Learning

MODELS & LEARNERS: (4 slides, d1slot1 teil 2) Model = Learner + data Learner = Hypothesenraum + Risikofunktion + Optimization (H-R-0)

TASKS: (d1slot2, 15 slides) Supervised Regression&Classification Unsupervised, SemiSupervised

KNN: (d1slot3, 16 slides) Distance measures H-R-O of KNN

Risk Minimization and Losses for Regression (d1slot4, 8 slides) Loss Funktion Risk-Funktion Minimieren des Risikos um Parameter zu schätzen

Linear Models (d1slot5-teil1, 16 slides): H-R-O

Polynomial Features and -Regression (d1slot5-teil2, 7 slides)

Day2:

CLASSIFICATION BASICS: (d2slot1, 9 slides) Terminology Class boundaries Linear classifiers Generative (H-R-O) / Discriminative (H-R-O)

GENERATIVE CLASSIFICATION (d2slot2, 14 slides) LDA QDA NaiveBayes

LOGISTIC REGRESSION (d2slot2-teil1, 11 slides) Logistic / bernoulli loss Class prediction H-R-O

MULTICLASS/SOFTMAX (d2slot2-teil2, 4 slides) Softmax Redundant params H-R-O

2 CULTURES (d2-slot4, 15 slides) Definition: Data-Modeling Definition: Algorithmic-Modeling Prediction & Interpretability Comparison Terminology

Day3:

Perf Estimation Intro (d3slot1, 7 slides) types of perf estimation, overview concept of generalization error estimation inner vs outer loss

Simple Performance Metric (d3slot2, 10) MSE, MAE, R^2 MCE, ACC Confusion Matrix Concepts of Misclassif-Costs Brier, LogLoss

Train and Test Error (d3slot3a, 19 slides) Train Error Test Error Bias and Variance of both estimator

Overfitting (d3slot3b, 5 slides) Overfitting Tradeoff zwischen model complexity und overfitting

ROC1 (d3slot4a, 10 slides) binaryclassif, imbalancy and costs conf matrix, FPs, FNs abgeleitete ROC maße F1

ROC2 (d3slot4b, 18 slides) ROC Space Scoring classifiers und ROC curve AUC und pAUC

Resampling (d4slot5, 12 slides) Crossvalidation Stratification Bootstrap und Subsampling Bias Variance of Subsampling

Day4:

TREE LEARNER (d4-slot1, 3 slides): Binary trees Splitting rules Trees are products of step functions

TREE OPTIMIZATION (d4-slot1, 14 slides): Exhaustive search over features, splits Stop Criteria Split Criteria (Regression, Classification)

TREE DETAILS (d4-slot2, 16 slides): Invariance to monotone trans Efficient split search over nominal features Pruning Missing values advantages/disadvantages of trees

BAGGING (d4-slot3, 3slides)

RF DEFINITION (d4-slot3, 8 slides): Definition RF Bagging variance Random feature sampling OOB errors

RF DETAILS (d4-slot4, 9 slides) Variable importance: permutation-based, improvement-based advantages/disadvantages of RF Benchmark RF vs CART vs KNN vs bagged CART vs bagged KNN

Day5:

Tuning (d5-slot1, 11 slides) definition of tuning types of hyperpars Grid Search Random Search Name-Dropping of Advanced Techniques

Nested Resampling (d5-slot2, 14 slides) Why does "optimizing the test error" fail in terms of unbiased evaluation? untouched test set principle train validation test tuning as part of model building nested resampling

berndbischl commented 4 years ago

UMSTRUKTURIERUNG

Train Error und Test Error eigener Chunk LDA / QDA eigener chunk Naive Bayes eiegener Chunk NACH LDA / QDA

ML Basics und Terminologie (anhand von Regression) Intro to ML (recht allgemein, 5 min, “Black box modelling” raus, nach 2 cultures verschieben) Einschränken Subset von ML: Supervised Learning (Begriffe: Daten, Features, Label/target), KEIN Modell Ein paar nette Regr-Task-Beispiele zur Illustrierung (war vorher d1slot2) Was ist ein Learner und ein Modell? + H-R-O Prinzip Risk Minimization Losses for Regression (L2, L1) LM (als erster volles Bsp aller dieser Konzepte) Polynomial Regression KNN Regression & Distance Measures

ML Basics Klassifikation Der Klassifiation Task, und Classif-Task-Beispiele (war vorher d1slot2) und Classif-Terninologoie: DiscrFunctions, Class boundaries Linear classifiers Discriminative Approach and Losses for Classification (01, Brier, LogLoss) LogisticFunction und LogReg SoftmaxFunction und SM-Regression KNN for classification Generative Approach LDA / QDA Naive Bayes (ausbauen?)

Eine "Meta" / Philosophie Bereich / Vogelperspektive

Überblick über ML-Ontologie (Unsupervised, Supervised, semisupervised) ML as BlackBox Stats vs ML

Performance Estimation

Perf Estimation Intro, Konzept von Metriken und Inner vs Outer Sagen dass alle bisherigen Losses auch gehen (ohne alles nochmal zu machen) R2 Confusion MatrixConcepts of Misclassif-Costs Train Error Test Error Bias and Variance of Train and Test Error Estimator ROC Motivation, binaryclassif, imbalancy and costs ROC Metriken FPs, FNs, abgeletete ROC maße, F1 ROC Space (for Labeling Classfiers) Scoring classifiers und ROC curve, AUC und pAUC Resampling and Subsampling Bias Variance of Subsampling Crossvalidation Practical Hints for Resampling (incl Stratification)

Model Complexity, Curse of Dim and Overfitting Curse of Dim and Highdim Data Overtitting Regularisierung Bias Variance

Day4:

TREE Hypo Raum (4 slides) mit dem Regr Bild Tree Split Criteria (Regression, Classification), ca 6 slides TREE Growing - ca 7 slides Exhaustive search over features, splits Stop Criteria Pruning Cat Features advantages/disadvantages of trees - 5 slides Invariance to monotone trans Missings

BAGGING (d4-slot3, 3slides + ) Analyse Bagging Varaince RF DEFINITION (d4-slot3, 8 slides): Definition RF Random feature sampling OOB errors RF VarImp RF Discussion advantages/disadvantages of RF Benchmark RF vs CART vs KNN vs bagged CART vs bagged KNN

Tuning Intro und Problem - 6 slides Tuning Algos - 5 slides Grid Search Random Search Name-Dropping of Advanced Techniques

Pipeline Evaluation and Nested Resampling Why does "optimizing the test error" fail in terms of unbiased evaluation? 5 slides untouched test set principle + train validation test - 3 slides tuning as part of model building + nested resampling

berndbischl commented 4 years ago

Fabian macht slides 1, 4, 5, infrastruktur Heidi macht 3 Bernd macht 2, model complexity, ml-philo (model complexity ist ein "bonus" und könnte etwas dauern da sehr neu und nicht 100% needed)

HeidiSeibold commented 4 years ago

I am done with the evaluation videos.