Closed AlexWang1900 closed 3 weeks ago
Hi. Using the pre-trained weights of cars, my reproduction results are 68.7531/81.2052 (succ/prec), also have small fluctuations.
pytorch 1.12.1, cuda 11.7, pytorch_lightning 1.5.10.
Hi, thanks for your interest. I've just test my pretrained weights of pedestrians on KITTI, here's my results, which is corresponding to our paper. I'm trying to find out which factor leads to the fluctuations of performance.
I've just checked the precision and success metrics during the training process. As shown in the following figure, the performance metrics are still not stable when the model weights converge I think this stems from unperfect testing data from KITTI and the nature of object tracking. As long as the tracked target is missing in the point cloud sequences, the following predictions provided by the 3D tracker are unstable. This problem is partially solved by our recent work MBPTrack: Improving 3D Point Cloud Tracking with Memory Networks and Box Priors.
I suggest you can train CXTrack from scratch under your env to reproduce the similar performance.
I tested the cxtrack3d pretrained weights ,and I got: cxtrack_kitti_car_81.6_69.1.ckpt: ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Test metric ┃ DataLoader 0 ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ precesion │ 79.60032653808594 │ │ runtime │ 0.018718518316745758 │ │ success │ 67.48014688491821 │ └───────────────────────────┴───────────────────────────┘ cxtrack_kitti_pedestrian_91.5_67.0.ckpt: ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Test metric ┃ DataLoader 0 ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ precesion │ 87.14067840576172 │ │ runtime │ 0.019559158012270927 │ │ success │ 63.82514238357544 │ └───────────────────────────┴───────────────────────────┘
My environment : pytorch 2.01,cuda 11.8,pytorch_lightning 2.04 data are from kitti official site.
Under the same environment and data, M2TRACK (OPEN3DSOT) GOT:
github page results: M2Track-KITTI | Car | 67.43 | 81.04 | pretrained_models/mmtrack_kitti_car.ckpt
M2Track-KITTI | Pedestrian | 60.61 | 89.39 | pretrained_models/mmtrack_kitti_pedestrian.ckpt
my test results:
pedestrian: ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Test metric ┃ DataLoader 0 ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ precision/test_epoch │ 89.54376220703125 │ │ success/test_epoch │ 60.786376953125 │ └───────────────────────────┴───────────────────────────┘ car: ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Test metric ┃ DataLoader 0 ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ precision/test_epoch │ 81.04179382324219 │ │ success/test_epoch │ 67.47976684570312 │ └───────────────────────────┴───────────────────────────┘