sokrypton / ColabDesign

Making Protein Design accessible to all via Google Colab!
Other
618 stars 146 forks source link

Out of memory error #93

Open bethleegy opened 2 years ago

bethleegy commented 2 years ago

Hi there! I found your colab coincidentally and wanted to try hallucinating some binders using it for the protein "8DYS" on PDB.

However, when using the recommended settings and initializing with "WEQLARDRSRFARR" (a known natural binder that we're trying to modulate), I get the following error:

Stage 1: running (logits → soft)
---------------------------------------------------------------------------
UnfilteredStackTrace                      Traceback (most recent call last)
[<ipython-input-4-09dc0c470929>](https://localhost:8080/#) in <module>
     36 if optimizer == "pssm_semigreedy":
---> 37   model.design_pssm_semigreedy(120, 32, **flags)
     38   pssm = softmax(model._tmp["seq_logits"],1)

23 frames
UnfilteredStackTrace: jaxlib.xla_extension.XlaRuntimeError: RESOURCE_EXHAUSTED: Out of memory while trying to allocate 13771167248 bytes.
BufferAssignment OOM Debugging.
BufferAssignment stats:
             parameter allocation:  444.12MiB
              constant allocation:    54.2KiB
        maybe_live_out allocation:   89.58MiB
     preallocated temp allocation:   12.83GiB
                 total allocation:   13.35GiB

Do you have any suggestions on how to get around the issues?

Thank you very much!

vuhongai commented 2 years ago

I do have the same problem when I try to allocate 32G of data in 2 A30 GPUs (with 24GB each), either using both GPUs or single one. So I get around by using CPU instead, although it's certainly slower. You can put at the very beginning of your code: import jax jax.config.update('jax_platform_name', 'cpu')

bethleegy commented 2 years ago

Thank you! I tried that (I also have Colab pro) but it now says "Your session crashed after using all available RAM." Is the only workaround this to purchase more RAM through Colab?

sokrypton commented 1 year ago

Unfortunately... Unless you get a GPU with larger amounts of memory, there isn't an easy to reduce memory usage :(

We tried implementating crops during design, but this didn't work too well.

Final option would be to use "design_semigreedy" or "_design_mcmc" (the later might be broken, it was something I implemented but haven't tested yet). This does not backprop through the model (which requires 2X more memory).

vuhongai commented 1 year ago

@sokrypton I think you can use partial hallucination with template to crop the target protein, then use the resulting protein to design binder by providing hotspots away from hallucinated regions. Although it needs to set template=True in all steps.