spsanderson / healthyR.ai

healthyR.ai - AI package for the healthyverse
http://www.spsanderson.com/healthyR.ai/
Other
16 stars 6 forks source link

hai_auto_knn() #223

Closed spsanderson closed 2 years ago

spsanderson commented 2 years ago

Function:

hai_auto_knn <- function(.data, .rec_obj, .splits_obj = NULL, .rsamp_obj = NULL, 
                         .tune = TRUE, .grid_size = 10, .num_cores = 1, 
                         .best_metric = "rmse", .model_type = "regression"){

  # Tidyeval ----
  grid_size <- as.numeric(.grid_size)
  num_cores <- as.numeric(.num_cores)
  best_metric <- as.character(.best_metric)

  data_tbl <- dplyr::as_tibble(.data)

  splits <- .splits_obj
  rec_obj <- .rec_obj
  rsamp_obj <- .rsamp_obj
  model_type <- as.character(.model_type)

  # Checks ----
  if (!inherits(x = splits, what = "rsplit")){
    rlang::abort(
      message = "'.rsamp_obj' must have a class of 'rsplit', use the rsample package.",
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = rec_obj, what = "recipe")){
    rlang::abort(
      message = "'.rec_obj' must have a class of 'recipe'."
    )
  }

  if (!model_type %in% c("regression","classification")){
    rlang::abort(
      message = paste0(
        "You chose a mode of: '",
        model_type,
        "' this is unsupported. Choose from either 'regression' or 'classification'."
      ),
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = rsamp_obj, what = "rset") && !is.null(rsamp_obj)){
    rlang::abort(
      message = "The '.rsamp_obj' argument must either be NULL or an object of 
      calss 'rset'.",
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = splits, what = "rsplit") && !is.null(splits)){
    rlang::abort(
      message = "The '.splits_obj' argument must either be NULL or an object of
      class 'rsplit'",
      use_cli_format = TRUE
    )
  }

  # Set default metric set ----
  if (model_type == "classification"){
    ms <- hai_default_classification_metric_set()
  } else {
    ms <- hai_default_regression_metric_set()
  }

  # Get splits if not then create
  if (is.null(splits)){
    splits <- rsample::initial_split(data = data_tbl)
  } else {
    splits <- splits
  }

  # Tune/Spec ----
  if (.tune){
    # Model Specification
    model_spec <- parsnip::nearest_neighbor(
      neighbors = tune::tune(), 
      weight_func = tune::tune(),
      dist_power = tune::tune()
    )
  } else {
    model_spec <- parsnip::nearest_neighbor()
  }

  # Model Specification ----
  model_spec <- model_spec %>%
    parsnip::set_mode(mode = model_type) %>%
    parsnip::set_engine(engine = "kknn")

  # Workflow ----
  wflw <- workflows::workflow() %>%
    workflows::add_recipe(rec_obj) %>%
    workflows::add_model(model_spec)

  # Tuning Grid ---
  if (.tune){

    # Make tuning grid
    tuning_grid_spec <- dials::grid_latin_hypercube(
      hardhat::extract_parameter_set_dials(model_spec),
      size = grid_size
    )

    # Cross validation object
    if (is.null(rsamp_obj)){
      cv_obj <- rsample::mc_cv(
        data = rsample::training(splits)
      )
    } else {
      cv_obj <- rsamp_obj
    }

    # Tune the workflow
    # Start parallel backed
    modeltime::parallel_start(num_cores)

    tuned_results <- wflw %>%
      tune::tune_grid(
        resamples = cv_obj,
        grid      = tuning_grid_spec,
        metrics   = ms
      )

    modeltime::parallel_stop()

    # Get the best result set by a specified metric
    best_result_set <- tuned_results %>%
      tune::show_best(metric = best_metric, n = 1)

    # Plot results
    tune_results_plt <- tuned_results %>%
      tune::autoplot() +
      ggplot2::theme_minimal() +
      ggplot2::geom_smooth(se = FALSE) +
      ggplot2::theme(legend.position = "bottom")

    # Make final workflow
    wflw_fit <- wflw %>%
      tune::finalize_workflow(
        tuned_results %>%
          tune::show_best(metric = best_metric, n = 1)
      ) %>%
      parsnip::fit(rsample::training(splits))

  } else {
    wflw_fit <- wflw %>%
      parsnip::fit(rsample::training(splits))
  }

  # Return ----
  output <- list(
    recipe_info = rec_obj,
    model_info = list(
      model_spec  = model_spec,
      wflw        = wflw,
      fitted_wflw = wflw_fit,
      was_tuned   = ifelse(.tune, "tuned", "not_tuned")
    )
  )

  if (.tune){
    output$tuned_info = list(
      tuning_grid      = tuning_grid_spec,
      cv_obj           = cv_obj,
      tuned_results    = tuned_results,
      grid_size        = grid_size,
      best_metric      = best_metric,
      best_result_set  = best_result_set,
      tuning_grid_plot = tune_results_plt,
      plotly_grid_plot = plotly::ggplotly(tune_results_plt)
    )
  }

  return(invisible(output))

}

Example:

output
$recipe_info
Recipe

Inputs:

      role #variables
   outcome          1
 predictor          4

Operations:

Novel factor level assignment for recipes::all_nominal_predictors()
Dummy variables from recipes::all_nominal_predictors()
Zero variance filter on recipes::all_predictors()
Centering and scaling for recipes::all_numeric()

$model_info
$model_info$model_spec
K-Nearest Neighbor Model Specification (classification)

Main Arguments:
  neighbors = tune::tune()
  weight_func = tune::tune()
  dist_power = tune::tune()

Computational engine: kknn 

$model_info$wflw
== Workflow ===============================================================================
Preprocessor: Recipe
Model: nearest_neighbor()

-- Preprocessor ---------------------------------------------------------------------------
4 Recipe Steps

* step_novel()
* step_dummy()
* step_zv()
* step_normalize()

-- Model ----------------------------------------------------------------------------------
K-Nearest Neighbor Model Specification (classification)

Main Arguments:
  neighbors = tune::tune()
  weight_func = tune::tune()
  dist_power = tune::tune()

Computational engine: kknn 

$model_info$fitted_wflw
== Workflow [trained] =====================================================================
Preprocessor: Recipe
Model: nearest_neighbor()

-- Preprocessor ---------------------------------------------------------------------------
4 Recipe Steps

* step_novel()
* step_dummy()
* step_zv()
* step_normalize()

-- Model ----------------------------------------------------------------------------------

Call:
kknn::train.kknn(formula = ..y ~ ., data = data, ks = min_rows(5L,     data, 5), distance = ~1.58310485205147, kernel = ~"inv")

Type of response variable: nominal
Minimal misclassification: 0.03571429
Best kernel: inv
Best k: 5

$model_info$was_tuned
[1] "tuned"

$tuned_info
$tuned_info$tuning_grid
# A tibble: 10 x 3
   neighbors weight_func  dist_power
       <int> <chr>             <dbl>
 1         2 triweight         1.11 
 2        10 gaussian          1.67 
 3         7 epanechnikov      0.667
 4        12 optimal           0.730
 5         4 rank              1.87 
 6        12 triangular        0.163
 7        14 cos               1.28 
 8         5 inv               1.58 
 9         8 rectangular       0.315
10         4 biweight          0.917

$tuned_info$cv_obj
# Monte Carlo cross-validation (0.75/0.25) with 25 resamples  
# A tibble: 25 x 2
   splits          id        
   <list>          <chr>     
 1 <split [84/28]> Resample01
 2 <split [84/28]> Resample02
 3 <split [84/28]> Resample03
 4 <split [84/28]> Resample04
 5 <split [84/28]> Resample05
 6 <split [84/28]> Resample06
 7 <split [84/28]> Resample07
 8 <split [84/28]> Resample08
 9 <split [84/28]> Resample09
10 <split [84/28]> Resample10
# ... with 15 more rows

$tuned_info$tuned_results
# Tuning results
# Monte Carlo cross-validation (0.75/0.25) with 25 resamples  
# A tibble: 25 x 4
   splits          id         .metrics           .notes          
   <list>          <chr>      <list>             <list>          
 1 <split [84/28]> Resample01 <tibble [110 x 7]> <tibble [0 x 3]>
 2 <split [84/28]> Resample02 <tibble [110 x 7]> <tibble [0 x 3]>
 3 <split [84/28]> Resample03 <tibble [110 x 7]> <tibble [0 x 3]>
 4 <split [84/28]> Resample04 <tibble [110 x 7]> <tibble [0 x 3]>
 5 <split [84/28]> Resample05 <tibble [110 x 7]> <tibble [0 x 3]>
 6 <split [84/28]> Resample06 <tibble [110 x 7]> <tibble [0 x 3]>
 7 <split [84/28]> Resample07 <tibble [110 x 7]> <tibble [0 x 3]>
 8 <split [84/28]> Resample08 <tibble [110 x 7]> <tibble [0 x 3]>
 9 <split [84/28]> Resample09 <tibble [110 x 7]> <tibble [0 x 3]>
10 <split [84/28]> Resample10 <tibble [110 x 7]> <tibble [0 x 3]>
# ... with 15 more rows

$tuned_info$grid_size
[1] 10

$tuned_info$best_metric
[1] "f_meas"

$tuned_info$best_result_set
# A tibble: 1 x 9
  neighbors weight_func dist_power .metric .estimator  mean     n std_err .config          
      <int> <chr>            <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>            
1         5 inv               1.58 f_meas  macro      0.963    25 0.00580 Preprocessor1_Mo~

$tuned_info$tuning_grid_plot
`geom_smooth()` using method = 'loess' and formula 'y ~ x'

$tuned_info$plotly_grid_plot

image