spsanderson / healthyR.ai

healthyR.ai - AI package for the healthyverse
http://www.spsanderson.com/healthyR.ai/
Other
16 stars 6 forks source link

hai_auto_earth() #258

Closed spsanderson closed 2 years ago

spsanderson commented 2 years ago

Function:

#' Boilerplate Workflow
#'
#' @family Boiler_Plate
#' @family Earth
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details
#' This uses the `parsnip::mars()` with the `engine` set to `earth`
#'
#' @description This is a boilerplate function to create automatically the following:
#' -  recipe
#' -  model specification
#' -  workflow
#' -  tuned model (grid ect)
#' 
#' @seealso \url{http://uc-r.github.io/mars}
#'
#' @param .data The data being passed to the function. The time-series object.
#' @param .rec_obj This is the recipe object you want to use. You can use
#' `hai_earth_data_prepper()` an automatic recipe_object.
#' @param .splits_obj NULL is the default, when NULL then one will be created.
#' @param .rsamp_obj NULL is the default, when NULL then one will be created. It
#' will default to creating an [rsample::mc_cv()] object.
#' @param .tune Default is TRUE, this will create a tuning grid and tuned workflow
#' @param .grid_size Default is 10
#' @param .num_cores Default is 1
#' @param .best_metric Default is "f_meas". You can choose a metric depending on the
#' model_type used. If `regression` then see [healthyR.ai::hai_default_regression_metric_set()],
#' if `classification` then see [healthyR.ai::hai_default_classification_metric_set()].
#' @param .model_type Default is `classification`, can also be `regression`.
#'
#' @examples
#' \dontrun{
#' data <- iris
#'
#' rec_obj <- hai_earth_data_prepper(data, Species ~ .)
#'
#' auto_earth <- hai_auto_earth(
#'   .data = data,
#'   .rec_obj = rec_obj,
#'   .best_metric = "f_meas",
#'   .model_type = "classification"
#' )
#'
#' auto_earth$recipe_info
#' }
#'
#' @return
#' A list
#'
#' @export
#'

hai_auto_earth <- function(.data, .rec_obj, .splits_obj = NULL, .rsamp_obj = NULL,
                         .tune = TRUE, .grid_size = 10, .num_cores = 1,
                         .best_metric = "f_meas", .model_type = "classification"){

  # Tidyeval ----
  grid_size <- as.numeric(.grid_size)
  num_cores <- as.numeric(.num_cores)
  best_metric <- as.character(.best_metric)

  data_tbl <- dplyr::as_tibble(.data)

  splits <- .splits_obj
  rec_obj <- .rec_obj
  rsamp_obj <- .rsamp_obj
  model_type <- as.character(.model_type)

  # Checks ----
  if (!inherits(x = splits, what = "rsplit") && !is.null(splits)){
    rlang::abort(
      message = "'.splits_obj' must have a class of 'rsplit', use the rsample package.",
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = rec_obj, what = "recipe")){
    rlang::abort(
      message = "'.rec_obj' must have a class of 'recipe'."
    )
  }

  if (!model_type %in% c("regression","classification")){
    rlang::abort(
      message = paste0(
        "You chose a mode of: '",
        model_type,
        "' this is unsupported. Choose from either 'regression' or 'classification'."
      ),
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = rsamp_obj, what = "rset") && !is.null(rsamp_obj)){
    rlang::abort(
      message = "The '.rsamp_obj' argument must either be NULL or an object of
      calss 'rset'.",
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = splits, what = "rsplit") && !is.null(splits)){
    rlang::abort(
      message = "The '.splits_obj' argument must either be NULL or an object of
      class 'rsplit'",
      use_cli_format = TRUE
    )
  }

  # Set default metric set ----
  if (model_type == "classification"){
    ms <- healthyR.ai::hai_default_classification_metric_set()
  } else {
    ms <- healthyR.ai::hai_default_regression_metric_set()
  }

  # Get splits if not then create
  if (is.null(splits)){
    splits <- rsample::initial_split(data = data_tbl)
  } else {
    splits <- splits
  }

  # Tune/Spec ----
  if (.tune){
    # Model Specification
    model_spec <- parsnip::mars(
      num_terms = tune::tune(),
      prod_degree = tune::tune(),
      prune_method = "none"
    )
  } else {
    model_spec <- parsnip::mars()
  }

  # Model Specification ----
  model_spec <- model_spec %>%
    parsnip::set_mode(mode = model_type) %>%
    parsnip::set_engine(engine = "earth")

  # Workflow ----
  wflw <- workflows::workflow() %>%
    workflows::add_recipe(rec_obj) %>%
    workflows::add_model(model_spec)

  # Tuning Grid ---
  if (.tune){

    # Make tuning grid
    tuning_grid_spec <- dials::grid_latin_hypercube(
      hardhat::extract_parameter_set_dials(model_spec),
      size = grid_size
    )

    # Cross validation object
    if (is.null(rsamp_obj)){
      cv_obj <- rsample::mc_cv(
        data = rsample::training(splits)
      )
    } else {
      cv_obj <- rsamp_obj
    }

    # Tune the workflow
    # Start parallel backed
    modeltime::parallel_start(num_cores)

    tuned_results <- wflw %>%
      tune::tune_grid(
        resamples = cv_obj,
        grid      = tuning_grid_spec,
        metrics   = ms
      )

    modeltime::parallel_stop()

    # Get the best result set by a specified metric
    best_result_set <- tuned_results %>%
      tune::show_best(metric = best_metric, n = 1)

    # Plot results
    tune_results_plt <- tuned_results %>%
      tune::autoplot() +
      ggplot2::theme_minimal() +
      ggplot2::geom_smooth(se = FALSE) +
      ggplot2::theme(legend.position = "bottom")

    # Make final workflow
    wflw_fit <- wflw %>%
      tune::finalize_workflow(
        tuned_results %>%
          tune::show_best(metric = best_metric, n = 1)
      ) %>%
      parsnip::fit(rsample::training(splits))

  } else {
    wflw_fit <- wflw %>%
      parsnip::fit(rsample::training(splits))
  }

  # Return ----
  output <- list(
    recipe_info = rec_obj,
    model_info = list(
      model_spec  = model_spec,
      wflw        = wflw,
      fitted_wflw = wflw_fit,
      was_tuned   = ifelse(.tune, "tuned", "not_tuned")
    )
  )

  if (.tune){
    output$tuned_info = list(
      tuning_grid      = tuning_grid_spec,
      cv_obj           = cv_obj,
      tuned_results    = tuned_results,
      grid_size        = grid_size,
      best_metric      = best_metric,
      best_result_set  = best_result_set,
      tuning_grid_plot = tune_results_plt,
      plotly_grid_plot = plotly::ggplotly(tune_results_plt)
    )
  }

  attr(output, "function_type") <- "boilerplate"
  attr(output, ".grid_size") <- .grid_size
  attr(output, ".tune") <- .tune
  attr(output, ".best_metric") <- .best_metric
  attr(output, ".model_type") <- model_type
  attr(output, ".engine") <- "earth"

  return(invisible(output))

}

Example:

data <- iris

rec_obj <- hai_earth_data_prepper(data, Species ~ .)

auto_earth <- hai_auto_earth(
  .data = data,
  .rec_obj = rec_obj,
  .best_metric = "f_meas"
)

> auto_earth
$recipe_info
Recipe

Inputs:

      role #variables
   outcome          1
 predictor          4

Operations:

Factor variables from tidyselect::vars_select_helpers$wher(is.character)
Novel factor level assignment for recipes::all_nominal_predictors()
Dummy variables from recipes::all_nominal_predictors()
Zero variance filter on recipes::all_predictors()

$model_info
$model_info$model_spec
MARS Model Specification (classification)

Main Arguments:
  num_terms = tune::tune()
  prod_degree = tune::tune()
  prune_method = none

Computational engine: earth 

$model_info$wflw
== Workflow ===============================================================================
Preprocessor: Recipe
Model: mars()

-- Preprocessor ---------------------------------------------------------------------------
4 Recipe Steps

* step_string2factor()
* step_novel()
* step_dummy()
* step_zv()

-- Model ----------------------------------------------------------------------------------
MARS Model Specification (classification)

Main Arguments:
  num_terms = tune::tune()
  prod_degree = tune::tune()
  prune_method = none

Computational engine: earth 

$model_info$fitted_wflw
== Workflow [trained] =====================================================================
Preprocessor: Recipe
Model: mars()

-- Preprocessor ---------------------------------------------------------------------------
4 Recipe Steps

* step_string2factor()
* step_novel()
* step_dummy()
* step_zv()

-- Model ----------------------------------------------------------------------------------
GLM (family binomial, link logit):
           nulldev  df       dev  df   devratio     AIC iters converged
setosa     142.113 111   59.9447 110     0.5780   63.94    22         1
versicolor 147.130 111  136.1428 110     0.0747  140.10     4         1
virginica  137.505 111   22.7716 110     0.8340   26.77     8         1

Earth selected 2 of 18 terms, and 1 of 4 predictors (pmethod="none") (nprune=2)
Termination condition: Reached nk 21
Importance: Petal.Length-unused, Sepal.Length-unused, Sepal.Width-unused, Petal.Width
Number of terms at each degree of interaction: 1 1 (additive model)

Earth
                  GCV       RSS       GRSq       RSq
setosa     0.16192779 17.020128 0.28104063 0.3130615
versicolor 0.22562605 23.715413 0.04502284 0.0875554
virginica  0.04988629  5.243517 0.76823192 0.7785543
All        0.35875853 37.708885 0.46986522 0.4934762

$model_info$was_tuned
[1] "tuned"

$tuned_info
$tuned_info$tuning_grid
# A tibble: 6 x 2
  num_terms prod_degree
      <int>       <int>
1         3           2
2         4           1
3         2           2
4         5           1
5         4           2
6         3           1

$tuned_info$cv_obj
# Monte Carlo cross-validation (0.75/0.25) with 25 resamples  
# A tibble: 25 x 2
   splits          id        
   <list>          <chr>     
 1 <split [84/28]> Resample01
 2 <split [84/28]> Resample02
 3 <split [84/28]> Resample03
 4 <split [84/28]> Resample04
 5 <split [84/28]> Resample05
 6 <split [84/28]> Resample06
 7 <split [84/28]> Resample07
 8 <split [84/28]> Resample08
 9 <split [84/28]> Resample09
10 <split [84/28]> Resample10
# ... with 15 more rows

$tuned_info$tuned_results
# Tuning results
# Monte Carlo cross-validation (0.75/0.25) with 25 resamples  
# A tibble: 25 x 4
   splits          id         .metrics          .notes          
   <list>          <chr>      <list>            <list>          
 1 <split [84/28]> Resample01 <tibble [66 x 6]> <tibble [5 x 3]>
 2 <split [84/28]> Resample02 <tibble [66 x 6]> <tibble [5 x 3]>
 3 <split [84/28]> Resample03 <tibble [66 x 6]> <tibble [5 x 3]>
 4 <split [84/28]> Resample04 <tibble [66 x 6]> <tibble [5 x 3]>
 5 <split [84/28]> Resample05 <tibble [66 x 6]> <tibble [5 x 3]>
 6 <split [84/28]> Resample06 <tibble [66 x 6]> <tibble [5 x 3]>
 7 <split [84/28]> Resample07 <tibble [66 x 6]> <tibble [5 x 3]>
 8 <split [84/28]> Resample08 <tibble [66 x 6]> <tibble [5 x 3]>
 9 <split [84/28]> Resample09 <tibble [66 x 6]> <tibble [5 x 3]>
10 <split [84/28]> Resample10 <tibble [66 x 6]> <tibble [5 x 3]>
# ... with 15 more rows

There were issues with some computations:

  - Warning(s) x73: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x1: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x1: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x25: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x2: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x6: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x1: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x1: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x3: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x8: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...   - Warning(s) x4: glm.fit: algorithm did not converge, glm.fit: fitted probabilities numeric...

Use `collect_notes(object)` for more information.

$tuned_info$grid_size
[1] 10

$tuned_info$best_metric
[1] "f_meas"

$tuned_info$best_result_set
# A tibble: 1 x 8
  num_terms prod_degree .metric .estimator  mean     n std_err .config             
      <int>       <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
1         2           2 f_meas  macro      0.128    25  0.0128 Preprocessor1_Model4

$tuned_info$tuning_grid_plot
`geom_smooth()` using method = 'loess' and formula 'y ~ x'

$tuned_info$plotly_grid_plot

attr(,"function_type")
[1] "boilerplate"
attr(,".grid_size")
[1] 10
attr(,".tune")
[1] TRUE
attr(,".best_metric")
[1] "f_meas"
attr(,".model_type")
[1] "classification"
attr(,".engine")
[1] "earth"
There were 50 or more warnings (use warnings() to see the first 50)