spsanderson / healthyR.ts

A time-series companion package to healthyR
https://www.spsanderson.com/healthyR.ts/
Other
19 stars 3 forks source link

auto_arima #277

Closed spsanderson closed 2 years ago

spsanderson commented 2 years ago

Function:

#' Boilerplate Workflow
#'
#' @family Boiler_Plate
#' @family arima
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details
#' This uses the `modeltime::arima_reg()` with the `engine` set to `arima`
#'
#' @seealso \url{https://business-science.github.io/modeltime/reference/arima_reg.html}
#'
#' @description This is a boilerplate function to create automatically the following:
#' -  recipe
#' -  model specification
#' -  workflow
#' -  tuned model (grid ect)
#' -  calibration tibble and plot
#'
#' @param .data The data being passed to the function. The time-series object.
#' @param .date_col The column that holds the datetime.
#' @param .value_col The column that has the value
#' @param .formula The formula that is passed to the recipe like `value ~ .`
#' @param .rsamp_obj The rsample splits object
#' @param .prefix Default is `ts_arima`
#' @param .tune Defaults to TRUE, this creates a tuning grid and tuned model.
#' @param .grid_size If `.tune` is TRUE then the `.grid_size` is the size of the
#' tuning grid.
#' @param .num_cores How many cores do you want to use. Default is 1
#' @param .cv_assess How many observations for assess. See [timetk::time_series_cv()]
#' @param .cv_skip How many observations to skip. See [timetk::time_series_cv()]
#' @param .cv_slice_limit How many slices to return. See [timetk::time_series_cv()]
#' @param .best_metric Default is "rmse". See [modeltime::default_forecast_accuracy_metric_set()]
#' @param .bootstrap_final Not yet implemented.
#'
#' @examples
#' \dontrun{
#' library(dplyr)
#'
#' data <- AirPassengers %>%
#'   ts_to_tbl() %>%
#'   select(-index)
#'
#' splits <- time_series_split(
#'   data
#'   , date_col
#'   , assess = 12
#'   , skip = 3
#'   , cumulative = TRUE
#' )
#'
#' ts_auto_arima <- ts_auto_arima(
#'   .data = data,
#'   .num_cores = 5,
#'   .date_col = date_col,
#'   .value_col = value,
#'   .rsamp_obj = splits,
#'   .formula = value ~ .,
#'   .grid_size = 20,
#'   .cv_slice_limit = 2
#' )
#'
#' ts_auto_arima$recipe_info
#' }
#'
#' @return
#' A list
#'
#' @export
#'

ts_auto_arima <- function(.data, .date_col, .value_col, .formula, .rsamp_obj,
                                  .prefix = "ts_arima", .tune = TRUE, .grid_size = 10,
                                  .num_cores = 1, .cv_assess = 12, .cv_skip = 3,
                                  .cv_slice_limit = 6, .best_metric = "rmse",
                                  .bootstrap_final = FALSE){

  # Tidyeval ----
  date_col_var_expr <- rlang::enquo(.date_col)
  value_col_var_expr <- rlang::enquo(.value_col)
  sampling_object <- .rsamp_obj
  # Cross Validation
  cv_assess = as.numeric(.cv_assess)
  cv_skip   = as.numeric(.cv_skip)
  cv_slice  = as.numeric(.cv_slice_limit)
  # Tuning Grid
  grid_size <- as.numeric(.grid_size)
  num_cores <- as.numeric(.num_cores)
  best_metric <- as.character(.best_metric)
  # Data and splits
  splits <- .rsamp_obj
  data_tbl <- dplyr::as_tibble(.data)

  # Checks ----
  if (rlang::quo_is_missing(date_col_var_expr)){
    rlang::abort(
      message = "'.date_col' must be supplied.",
      use_cli_format = TRUE
    )
  }

  if (rlang::quo_is_missing(value_col_var_expr)){
    rlang::abort(
      message = "'.value_col' must be supplied.",
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = splits, what = "rsplit")){
    rlang::abort(
      message = "'.rsamp_obj' must be have class rsplit, use the rsample package.",
      use_cli_format = TRUE
    )
  }

  # Recipe ----
  # Get the initial recipe call
  recipe_call <- get_recipe_call(match.call())

  rec_syntax <- paste0(.prefix, "_recipe") %>%
    assign_value(!!recipe_call)

  rec_obj <- recipes::recipe(formula = .formula, data = data_tbl)

  # Tune/Spec ----
  if (.tune){
    model_spec <- modeltime::arima_reg(
      seasonal_period            = tune::tune()
      , non_seasonal_ar          = tune::tune()
      , non_seasonal_differences = tune::tune()
      , non_seasonal_ma          = tune::tune()
      , seasonal_ar              = tune::tune()
      , seasonal_differences     = tune::tune()
      , seasonal_ma              = tune::tune()
    )
  } else {
    model_spec <- modeltime::arima_reg()
  }

  model_spec <- model_spec %>%
    parsnip::set_mode(mode = "regression") %>%
    parsnip::set_engine("arima")

  # Workflow ----
  wflw <- workflows::workflow() %>%
    workflows::add_recipe(rec_obj) %>%
    workflows::add_model(model_spec)

  # Tuning Grid ----
  if (.tune){

    # Start parallel backend
    modeltime::parallel_start(num_cores)

    tuning_grid_spec <- dials::grid_latin_hypercube(
      hardhat::extract_parameter_set_dials(model_spec),
      size = grid_size
    )

    # Make TS CV ----
    tscv <- timetk::time_series_cv(
      data        = rsample::training(splits),
      date_var    = {{date_col_var_expr}},
      cumulative  = TRUE,
      assess      = cv_assess,
      skip        = cv_skip,
      slice_limit = cv_slice
    )

    # Tune the workflow
    tuned_results <- wflw %>%
      tune::tune_grid(
        resamples = tscv,
        grid      = tuning_grid_spec,
        metrics   = modeltime::default_forecast_accuracy_metric_set()
      )

    # Get the best result set by a specified metric
    best_result_set <- tuned_results %>%
      tune::show_best(metric = best_metric, n = 1)

    # Plot results
    tune_results_plt <- tuned_results %>%
      tune::autoplot() +
      ggplot2::theme_minimal() +
      ggplot2::geom_smooth(se = FALSE)

    # Make final workflow
    wflw_fit <- wflw %>%
      tune::finalize_workflow(
        tuned_results %>%
          tune::show_best(metric = best_metric, n = Inf) %>%
          dplyr::slice(1)
      ) %>%
      parsnip::fit(rsample::training(splits))

    # Stop parallel backend
    modeltime::parallel_stop()

  } else {
    wflw_fit <- wflw %>%
      parsnip::fit(rsample::training(splits))
  }

  # Calibrate and Plot ----
  cap <- healthyR.ts::calibrate_and_plot(
    wflw_fit,
    .splits_obj  = splits,
    .data        = data_tbl,
    .interactive = TRUE,
    .print_info  = FALSE
  )

  # Return ----
  output <- list(
    recipe_info = list(
      recipe_call   = recipe_call,
      recipe_syntax = rec_syntax,
      rec_obj       = rec_obj
    ),
    model_info = list(
      model_spec  = model_spec,
      wflw        = wflw,
      fitted_wflw = wflw_fit,
      was_tuned   = ifelse(.tune, "tuned", "not_tuned")
    ),
    model_calibration = list(
      plot = cap$plot,
      calibration_tbl = cap$calibration_tbl,
      model_accuracy = cap$model_accuracy
    )
  )

  if (.tune){
    output$tuned_info = list(
      tuning_grid      = tuning_grid_spec,
      tscv             = tscv,
      tuned_results    = tuned_results,
      grid_size        = grid_size,
      best_metric      = best_metric,
      best_result_set  = best_result_set,
      tuning_grid_plot = tune_results_plt,
      plotly_grid_plot = plotly::ggplotly(tune_results_plt)
    )
  }

  return(invisible(output))
}

Example:

library(dplyr)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

ts_auto_arima <- ts_auto_arima(
  .data = data,
  .num_cores = 5,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 20,
  .cv_slice_limit = 2
)

> ts_auto_arima$recipe_info
$recipe_call
recipe(.data = data, .date_col = date_col, .value_col = value, 
    .formula = value ~ ., .rsamp_obj = splits, .grid_size = 20, 
    .num_cores = 5, .cv_slice_limit = 2)

$recipe_syntax
[1] "ts_arima_recipe <-"                                                                                                                                                       
[2] "\n  recipe(.data = data, .date_col = date_col, .value_col = value, .formula = value ~ \n    ., .rsamp_obj = splits, .grid_size = 20, .num_cores = 5, .cv_slice_limit = 2)"

$rec_obj
Recipe

Inputs:

      role #variables
   outcome          1
 predictor          1