spsanderson / healthyR.ts

A time-series companion package to healthyR
https://www.spsanderson.com/healthyR.ts/
Other
19 stars 3 forks source link

smooth::es #278

Closed spsanderson closed 2 years ago

spsanderson commented 2 years ago

Need to figure out how to plot the tuning grid, if not then drop it from the script and output

spsanderson commented 2 years ago

Function:

#' Boilerplate Workflow
#'
#' @family Boiler_Plate
#' @family exp_smoothing
#' @family smooth_es
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This uses `modeltime::exp_smoothing()` and sets the `parsnip::engine`
#' to `smooth_es`.
#'
#' @seealso \url{https://business-science.github.io/modeltime/reference/exp_smoothing.html#ref-examples}
#' @seealso \url{https://github.com/config-i1/smooth}
#'
#' @description This is a boilerplate function to automatically create the following:
#' -  recipe
#' -  model specification
#' -  workflow
#' -  tuned model (grid ect)
#' -  calibration tibble and plot
#'
#' @param .data The data being passed to the function. The time-series object.
#' @param .date_col The column that holds the datetime.
#' @param .value_col The column that has the value
#' @param .formula The formula that is passed to the recipe like `value ~ .`
#' @param .rsamp_obj The rsample splits object
#' @param .prefix Default is `ts_smooth_es`
#' @param .tune Defaults to TRUE, this creates a tuning grid and tuned model.
#' @param .grid_size If `.tune` is TRUE then the `.grid_size` is the size of the
#' tuning grid.
#' @param .num_cores How many cores do you want to use. Default is 1
#' @param .cv_assess How many observations for assess. See [timetk::time_series_cv()]
#' @param .cv_skip How many observations to skip. See [timetk::time_series_cv()]
#' @param .cv_slice_limit How many slices to return. See [timetk::time_series_cv()]
#' @param .best_metric Default is "rmse". See [modeltime::default_forecast_accuracy_metric_set()]
#' @param .bootstrap_final Not yet implemented.
#'
#' @examples
#' \dontrun{
#' library(dplyr)
#'
#' data <- AirPassengers %>%
#'   ts_to_tbl() %>%
#'   select(-index)
#'
#' splits <- time_series_split(
#'   data
#'   , date_col
#'   , assess = 12
#'   , skip = 3
#'   , cumulative = TRUE
#' )
#'
#' ts_smooth_es <- ts_auto_smooth_es(
#'   .data = data,
#'   .num_cores = 5,
#'   .date_col = date_col,
#'   .value_col = value,
#'   .rsamp_obj = splits,
#'   .formula = value ~ .,
#'   .grid_size = 3
#' )
#'
#' ts_smooth_es$recipe_info
#' }
#'
#' @return
#' A list
#'
#' @export
#'

ts_auto_smooth_es <- function(.data, .date_col, .value_col, .formula, .rsamp_obj,
                           .prefix = "ts_glmnet", .tune = TRUE, .grid_size = 10,
                           .num_cores = 1, .cv_assess = 12, .cv_skip = 3,
                           .cv_slice_limit = 6, .best_metric = "rmse",
                           .bootstrap_final = FALSE){

  # Tidyeval ----
  date_col_var_expr <- rlang::enquo(.date_col)
  value_col_var_expr <- rlang::enquo(.value_col)
  sampling_object <- .rsamp_obj

  # Cross Validation
  cv_assess = as.numeric(.cv_assess)
  cv_skip   = as.numeric(.cv_skip)
  cv_slice  = as.numeric(.cv_slice_limit)

  # Tuning Grid
  grid_size <- as.numeric(.grid_size)
  num_cores <- as.numeric(.num_cores)
  best_metric <- as.character(.best_metric)

  # Data and splits
  splits <- .rsamp_obj
  data_tbl <- dplyr::as_tibble(.data)

  # Checks ----
  if (rlang::quo_is_missing(date_col_var_expr)){
    rlang::abort(
      message = "'.date_col' must be supplied.",
      use_cli_format = TRUE
    )
  }

  if (rlang::quo_is_missing(value_col_var_expr)){
    rlang::abort(
      message = "'.value_col' must be supplied.",
      use_cli_format = TRUE
    )
  }

  if (!inherits(x = splits, what = "rsplit")){
    rlang::abort(
      message = "'.rsamp_obj' must be have class rsplit, use the rsample package.",
      use_cli_format = TRUE
    )
  }

  # Recipe ----
  # Get the initial recipe call
  recipe_call <- get_recipe_call(match.call())

  rec_syntax <- paste0(.prefix, "_recipe") %>%
    assign_value(!!recipe_call)

  rec_obj <- recipes::recipe(formula = .formula, data = data_tbl)

  rec_obj <- rec_obj %>%
    timetk::step_timeseries_signature({{date_col_var_expr}}) %>%
    timetk::step_holiday_signature({{date_col_var_expr}}) %>%
    recipes::step_novel(recipes::all_nominal_predictors()) %>%
    recipes::step_mutate_at(tidyselect::vars_select_helpers$where(is.character)
                            , fn = ~ as.factor(.)) %>%
    recipes::step_dummy(recipes::all_nominal(), one_hot = TRUE) %>%
    recipes::step_normalize(recipes::all_numeric_predictors(), -date_col_index.num) %>%
    recipes::step_nzv(recipes::all_predictors(), -date_col_index.num) %>%
    recipes::step_corr(recipes::all_numeric_predictors(), threshold = 0)

  # Tune/Spec ----
  if (.tune){
    model_spec <- modeltime::exp_smoothing(
      seasonal_period = tune::tune(),
      error = tune::tune(),
      trend = tune::tune(),
      season = tune::tune(),
      damping = tune::tune(),
      smooth_level = tune::tune(),
      smooth_trend = tune::tune(),
      smooth_seasonal = tune::tune()
    )
  } else {
    model_spec <- modeltime::exp_smoothing()
  }

  model_spec <- model_spec %>%
    parsnip::set_mode(mode = "regression") %>%
    parsnip::set_engine("smooth_es")

  # Workflow ----
  wflw <- workflows::workflow() %>%
    workflows::add_recipe(rec_obj) %>%
    workflows::add_model(model_spec)

  # Tuning Grid ----
  if (.tune){

    # Make tuning Grid ----
    tuning_grid_spec <- dials::grid_latin_hypercube(
      hardhat::extract_parameter_set_dials(model_spec),
      size = grid_size
    )

    # Make TS CV ----
    tscv <- timetk::time_series_cv(
      data        = rsample::training(splits),
      date_var    = {{date_col_var_expr}},
      cumulative  = TRUE,
      assess      = cv_assess,
      skip        = cv_skip,
      slice_limit = cv_slice
    )

    # Start parallel backend
    modeltime::parallel_start(num_cores)

    # Tune the workflow
    tuned_results <- wflw %>%
      tune::tune_grid(
        resamples = tscv,
        grid      = tuning_grid_spec,
        metrics   = modeltime::default_forecast_accuracy_metric_set()
      )

    # Stop parallel backend
    modeltime::parallel_stop()

    # Get the best result set by a specified metric
    best_result_set <- tuned_results %>%
      tune::show_best(metric = best_metric, n = 1)

    # Plot results
    # tune_results_plt <- tr_tbl %>%
    #   tune::autoplot() +
    #   ggplot2::theme_minimal() +
    #   ggplot2::geom_smooth(se = FALSE)

    # Make final workflow
    wflw_fit <- wflw %>%
      tune::finalize_workflow(
        tuned_results %>%
          tune::show_best(metric = best_metric, n = Inf) %>%
          dplyr::slice(1)
      ) %>%
      parsnip::fit(rsample::training(splits))

  } else {
    wflw_fit <- wflw %>%
      parsnip::fit(rsample::training(splits))
  }

  # Calibrate and Plot ----
  cap <- healthyR.ts::calibrate_and_plot(
    wflw_fit,
    .splits_obj  = splits,
    .data        = data_tbl,
    .interactive = TRUE,
    .print_info = FALSE
  )

  # Return ----
  output <- list(
    recipe_info = list(
      recipe_call   = recipe_call,
      recipe_syntax = rec_syntax,
      rec_obj       = rec_obj
    ),
    model_info = list(
      model_spec  = model_spec,
      wflw        = wflw,
      fitted_wflw = wflw_fit,
      was_tuned   = ifelse(.tune, "tuned", "not_tuned")
    ),
    model_calibration = list(
      plot = cap$plot,
      calibration_tbl = cap$calibration_tbl,
      model_accuracy = cap$model_accuracy
    )
  )

  if (.tune){
    output$tuned_info = list(
      tuning_grid      = tuning_grid_spec,
      tscv             = tscv,
      tuned_results    = tuned_results,
      grid_size        = grid_size,
      best_metric      = best_metric,
      best_result_set  = best_result_set
      #tuning_grid_plot = tune_results_plt,
      #plotly_grid_plot = plotly::ggplotly(tune_results_plt)
    )
  }

  return(invisible(output))
}

Example:

library(tidyverse)
library(tidymodels)
library(healthyverse)
library(modeltime)
library(timetk)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

ts_smooth_es <- ts_auto_smooth_es(
  .data = data,
  .num_cores = 5,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 3
)

> ts_smooth_es
$recipe_info
$recipe_info$recipe_call
recipe(.data = data, .date_col = date_col, .value_col = value, 
    .formula = value ~ ., .rsamp_obj = splits, .grid_size = 3, 
    .num_cores = 5)

$recipe_info$recipe_syntax
[1] "ts_glmnet_recipe <-"                                                                                                                                
[2] "\n  recipe(.data = data, .date_col = date_col, .value_col = value, .formula = value ~ \n    ., .rsamp_obj = splits, .grid_size = 3, .num_cores = 5)"

$recipe_info$rec_obj
Recipe

Inputs:

      role #variables
   outcome          1
 predictor          1

Operations:

Timeseries signature features from date_col
Holiday signature features from date_col
Novel factor level assignment for recipes::all_nominal_predictors()
Variable mutation for tidyselect::vars_select_helpers$where(is.character)
Dummy variables from recipes::all_nominal()
Centering and scaling for recipes::all_numeric_predictors(), -date_col_index.num
Sparse, unbalanced variable filter on recipes::all_predictors(), -date_col_index.num
Correlation filter on recipes::all_numeric_predictors()

$model_info
$model_info$model_spec
Exponential Smoothing State Space Model Specification (regression)

Main Arguments:
  seasonal_period = tune::tune()
  error = tune::tune()
  trend = tune::tune()
  season = tune::tune()
  damping = tune::tune()
  smooth_level = tune::tune()
  smooth_trend = tune::tune()
  smooth_seasonal = tune::tune()

Computational engine: smooth_es 

$model_info$wflw
== Workflow ===============================================================================
Preprocessor: Recipe
Model: exp_smoothing()

-- Preprocessor ---------------------------------------------------------------------------
8 Recipe Steps

* step_timeseries_signature()
* step_holiday_signature()
* step_novel()
* step_mutate_at()
* step_dummy()
* step_normalize()
* step_nzv()
* step_corr()

-- Model ----------------------------------------------------------------------------------
Exponential Smoothing State Space Model Specification (regression)

Main Arguments:
  seasonal_period = tune::tune()
  error = tune::tune()
  trend = tune::tune()
  season = tune::tune()
  damping = tune::tune()
  smooth_level = tune::tune()
  smooth_trend = tune::tune()
  smooth_seasonal = tune::tune()

Computational engine: smooth_es 

$model_info$fitted_wflw
== Workflow [trained] =====================================================================
Preprocessor: Recipe
Model: exp_smoothing()

-- Preprocessor ---------------------------------------------------------------------------
8 Recipe Steps

* step_timeseries_signature()
* step_holiday_signature()
* step_novel()
* step_mutate_at()
* step_dummy()
* step_normalize()
* step_nzv()
* step_corr()

-- Model ----------------------------------------------------------------------------------
Time elapsed: 0.23 seconds
Model estimated: ETSX(AMN)
Persistence vector g:
alpha  beta 
    1     0 
Initial values were optimised.
Xreg coefficients were estimated in a normal style

Loss function type: likelihood; Loss function value: 641.2584
Error standard deviation: 31.6414
Sample size: 132
Number of estimated parameters: 5
Number of provided parameters: 2
Number of degrees of freedom: 127
Information criteria:
     AIC     AICc      BIC     BICc 
1290.517 1290.832 1302.048 1302.817 

$model_info$was_tuned
[1] "tuned"

$model_calibration
$model_calibration$plot

$model_calibration$calibration_tbl
# Modeltime Table
# A tibble: 1 x 5
  .model_id .model     .model_desc .type .calibration_data
      <int> <list>     <chr>       <chr> <list>           
1         1 <workflow> ETSX(AMN)   Test  <tibble [12 x 4]>

$model_calibration$model_accuracy
# A tibble: 1 x 9
  .model_id .model_desc .type   mae  mape  mase smape  rmse    rsq
      <int> <chr>       <chr> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
1         1 ETSX(AMN)   Test   60.1  11.6  1.24  12.4  80.3 0.0362

$tuned_info
$tuned_info$tuning_grid
# A tibble: 3 x 8
  seasonal_period error      trend season damping smooth_level smooth_trend smooth_seasonal
  <chr>           <chr>      <chr> <chr>    <dbl>        <dbl>        <dbl>           <dbl>
1 yearly          multiplic~ mult~ multi~   1.93        0.370         0.256          0.848 
2 none            additive   none  none     0.244       0.861         0.535          0.606 
3 weekly          additive   mult~ addit~   0.991       0.0925        0.916          0.0284

$tuned_info$tscv
# Time Series Cross Validation Plan 
# A tibble: 6 x 2
  splits           id    
  <list>           <chr> 
1 <split [120/12]> Slice1
2 <split [117/12]> Slice2
3 <split [114/12]> Slice3
4 <split [111/12]> Slice4
5 <split [108/12]> Slice5
6 <split [105/12]> Slice6

$tuned_info$tuned_results
# Tuning results
# NA 
# A tibble: 6 x 4
  splits           id     .metrics           .notes          
  <list>           <chr>  <list>             <list>          
1 <split [120/12]> Slice1 <tibble [18 x 12]> <tibble [7 x 3]>
2 <split [117/12]> Slice2 <tibble [18 x 12]> <tibble [7 x 3]>
3 <split [114/12]> Slice3 <tibble [18 x 12]> <tibble [7 x 3]>
4 <split [111/12]> Slice4 <tibble [18 x 12]> <tibble [7 x 3]>
5 <split [108/12]> Slice5 <tibble [18 x 12]> <tibble [7 x 3]>
6 <split [105/12]> Slice6 <tibble [18 x 12]> <tibble [7 x 3]>

There were issues with some computations:

  - Warning(s) x6: A correlation computation is required, but `estimate` is constant and has ...   - Warning(s) x6: A correlation computation is required, but `estimate` is constant and has ...   - Warning(s) x6: A correlation computation is required, but `estimate` is constant and has ...   - Warning(s) x12: A correlation computation is required, but `estimate` is constant and has ...   - Warning(s) x12: A correlation computation is required, but `estimate` is constant and has ...

Use `collect_notes(object)` for more information.

$tuned_info$grid_size
[1] 3

$tuned_info$best_metric
[1] "rmse"

$tuned_info$best_result_set
# A tibble: 1 x 14
  seasonal_period error    trend   season damping smooth_level smooth_trend smooth_seasonal
  <chr>           <chr>    <chr>   <chr>    <dbl>        <dbl>        <dbl>           <dbl>
1 weekly          additive multip~ addit~   0.991       0.0925        0.916          0.0284
# ... with 6 more variables: .metric <chr>, .estimator <chr>, mean <dbl>, n <int>,
#   std_err <dbl>, .config <chr>

image