stanfordmlgroup / ngboost

Natural Gradient Boosting for Probabilistic Prediction
Apache License 2.0
1.66k stars 218 forks source link

Linalg error #343

Open ThomasMeissnerDS opened 10 months ago

ThomasMeissnerDS commented 10 months ago

Hi,

as part of a Kaggle competition I wanted to use Ngboost. However it fails with:

LinAlgError                               Traceback (most recent call last)
Cell In[58], line 112
     97     base_learner_choice = GradientBoostingRegressor(
     98                     max_depth=7,
     99                     n_estimators=300,
    100                     n_iter_no_change=20,
    101                     random_state=seed,
    102                 )
    104     model = NGBClassifier(
    105                     Dist=k_categorical(int(y_train.nunique())),
    106                     n_estimators=300,
   (...)
    109                     learning_rate=0.1,
    110                 )
--> 112     model.fit(
    113                 x_train,
    114                 y_train.values.ravel(),
    115                 X_val=x_test,
    116                 Y_val=y_test.values.ravel(),
    117                 sample_weight=classes_weights_sample,
    118                 early_stopping_rounds=10,
    119                 )
    121 if target_type=='num':
    122     preds.append(model.predict(X_test_temp))

File /opt/conda/lib/python3.10/site-packages/ngboost/ngboost.py:250, in NGBoost.fit(self, X, Y, X_val, Y_val, sample_weight, val_sample_weight, train_loss_monitor, val_loss_monitor, early_stopping_rounds)
    247 self.scalings = []
    248 self.col_idxs = []
--> 250 return self.partial_fit(
    251     X,
    252     Y,
    253     X_val=X_val,
    254     Y_val=Y_val,
    255     sample_weight=sample_weight,
    256     val_sample_weight=val_sample_weight,
    257     train_loss_monitor=train_loss_monitor,
    258     val_loss_monitor=val_loss_monitor,
    259     early_stopping_rounds=early_stopping_rounds,
    260 )

File /opt/conda/lib/python3.10/site-packages/ngboost/ngboost.py:384, in NGBoost.partial_fit(self, X, Y, X_val, Y_val, sample_weight, val_sample_weight, train_loss_monitor, val_loss_monitor, early_stopping_rounds)
    382 loss_list += [train_loss_monitor(D, Y_batch, weight_batch)]
    383 loss = loss_list[-1]
--> 384 grads = D.grad(Y_batch, natural=self.natural_gradient)
    386 proj_grad = self.fit_base(X_batch, grads, weight_batch)
    387 scale = self.line_search(proj_grad, P_batch, Y_batch, weight_batch)

File /opt/conda/lib/python3.10/site-packages/ngboost/scores.py:12, in Score.grad(self, Y, natural)
     10 if natural:
     11     metric = self.metric()
---> 12     grad = np.linalg.solve(metric, grad)
     13 return grad

File <__array_function__ internals>:200, in solve(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/numpy/linalg/linalg.py:386, in solve(a, b)
    384 signature = 'DD->D' if isComplexType(t) else 'dd->d'
    385 extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
--> 386 r = gufunc(a, b, signature=signature, extobj=extobj)
    388 return wrap(r.astype(result_t, copy=False))

File /opt/conda/lib/python3.10/site-packages/numpy/linalg/linalg.py:89, in _raise_linalgerror_singular(err, flag)
     88 def _raise_linalgerror_singular(err, flag):
---> 89     raise LinAlgError("Singular matrix")

LinAlgError: Singular matrix

I tried to remove collinear features, but the error kept popping up. Here is the public notebook.

What could be the root cause?