Implementations of IQL, QMIX, VDN, COMA, QTRAN, MAVEN, CommNet, DyMA-CL, and G2ANet on SMAC, the decentralised micromanagement scenario of StarCraft II
另外,我在将您的代码与自己的工作结合的时候,遇到了一个报错:Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [32, 9420]], which is output 0 of AsStridedBackward0, is at version 40; expected version 39 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True). 您知道这大概是什么导致的问题吗?
很抱歉打扰您,非常感谢您的阅读与解答!
前辈您好,您在qtran_base.py的_get_individual_q函数中首先进行了这样一个操作: if transitionidx == 0: , self.target_hidden = self.target_rnn(inputs, self.eval_hidden) 我想请教一下这样做的原因是什么,如果不这样做会导致什么错误?
另外,我在将您的代码与自己的工作结合的时候,遇到了一个报错:Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [32, 9420]], which is output 0 of AsStridedBackward0, is at version 40; expected version 39 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True). 您知道这大概是什么导致的问题吗? 很抱歉打扰您,非常感谢您的阅读与解答!