Closed 834810269 closed 1 year ago
Currently, you load the backbone weight to the network, so it cannot output correct results. You need to download the weight first.
Currently, you load the backbone weight to the network, so it cannot output correct results. You need to download the weight first.
Thanks for your reply!Where should I load the weights in demo.py. I have downloaded the pre-trained model according to the readme and put it in the specified path.
Currently, you load the backbone weight to the network, so it cannot output correct results. You need to download the weight first.
Thanks for your reply!Where should I load the weights in demo.py. I have downloaded the pre-trained model according to the readme and put it in the specified path.
See the yaml file: configs/SSIS/MS_R_101_BiFPN_SSISv2_demo.yaml
Currently, you load the backbone weight to the network, so it cannot output correct results. You need to download the weight first.
Thanks for your reply!Where should I load the weights in demo.py. I have downloaded the pre-trained model according to the readme and put it in the specified path.
See the yaml file: configs/SSIS/MS_R_101_BiFPN_SSISv2_demo.yaml
Thanks a lot!
The prediction is {'instances': None}
Some model parameters or buffers are not found in the checkpoint: backbone.bottom_up.res6.reduction.norm.{bias, running_mean, running_var, weight} backbone.bottom_up.res6.reduction.weight backbone.repeated_bifpn.0.lateral_0_f0.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.lateral_0_f0.{bias, weight} backbone.repeated_bifpn.0.lateral_1_f1.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.lateral_1_f1.{bias, weight} backbone.repeated_bifpn.0.lateral_2_f2.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.lateral_2_f2.{bias, weight} backbone.repeated_bifpn.0.outputs_f0_0_7.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f0_0_7.weight backbone.repeated_bifpn.0.outputs_f1_1_6.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f1_1_6.weight backbone.repeated_bifpn.0.outputs_f1_1_7_8.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f1_1_7_8.weight backbone.repeated_bifpn.0.outputs_f2_2_5.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f2_2_5.weight backbone.repeated_bifpn.0.outputs_f2_2_6_9.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f2_2_6_9.weight backbone.repeated_bifpn.0.outputs_f3_3_4.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f3_3_4.weight backbone.repeated_bifpn.0.outputs_f3_3_5_10.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f3_3_5_10.weight backbone.repeated_bifpn.0.outputs_f4_4_11.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.0.outputs_f4_4_11.weight backbone.repeated_bifpn.0.{weights_f0_0_7, weights_f1_1_6, weights_f1_1_7_8, weights_f2_2_5, weights_f2_2_6_9, weights_f3_3_4, weights_f3_3_5_10, weights_f4_4_11} backbone.repeated_bifpn.1.outputs_f0_0_7.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f0_0_7.weight backbone.repeated_bifpn.1.outputs_f1_1_6.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f1_1_6.weight backbone.repeated_bifpn.1.outputs_f1_1_7_8.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f1_1_7_8.weight backbone.repeated_bifpn.1.outputs_f2_2_5.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f2_2_5.weight backbone.repeated_bifpn.1.outputs_f2_2_6_9.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f2_2_6_9.weight backbone.repeated_bifpn.1.outputs_f3_3_4.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f3_3_4.weight backbone.repeated_bifpn.1.outputs_f3_3_5_10.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f3_3_5_10.weight backbone.repeated_bifpn.1.outputs_f4_4_11.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.1.outputs_f4_4_11.weight backbone.repeated_bifpn.1.{weights_f0_0_7, weights_f1_1_6, weights_f1_1_7_8, weights_f2_2_5, weights_f2_2_6_9, weights_f3_3_4, weights_f3_3_5_10, weights_f4_4_11} backbone.repeated_bifpn.2.outputs_f0_0_7.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f0_0_7.weight backbone.repeated_bifpn.2.outputs_f1_1_6.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f1_1_6.weight backbone.repeated_bifpn.2.outputs_f1_1_7_8.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f1_1_7_8.weight backbone.repeated_bifpn.2.outputs_f2_2_5.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f2_2_5.weight backbone.repeated_bifpn.2.outputs_f2_2_6_9.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f2_2_6_9.weight backbone.repeated_bifpn.2.outputs_f3_3_4.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f3_3_4.weight backbone.repeated_bifpn.2.outputs_f3_3_5_10.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f3_3_5_10.weight backbone.repeated_bifpn.2.outputs_f4_4_11.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.2.outputs_f4_4_11.weight backbone.repeated_bifpn.2.{weights_f0_0_7, weights_f1_1_6, weights_f1_1_7_8, weights_f2_2_5, weights_f2_2_6_9, weights_f3_3_4, weights_f3_3_5_10, weights_f4_4_11} backbone.repeated_bifpn.3.outputs_f0_0_7.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f0_0_7.weight backbone.repeated_bifpn.3.outputs_f1_1_6.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f1_1_6.weight backbone.repeated_bifpn.3.outputs_f1_1_7_8.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f1_1_7_8.weight backbone.repeated_bifpn.3.outputs_f2_2_5.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f2_2_5.weight backbone.repeated_bifpn.3.outputs_f2_2_6_9.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f2_2_6_9.weight backbone.repeated_bifpn.3.outputs_f3_3_4.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f3_3_4.weight backbone.repeated_bifpn.3.outputs_f3_3_5_10.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f3_3_5_10.weight backbone.repeated_bifpn.3.outputs_f4_4_11.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.3.outputs_f4_4_11.weight backbone.repeated_bifpn.3.{weights_f0_0_7, weights_f1_1_6, weights_f1_1_7_8, weights_f2_2_5, weights_f2_2_6_9, weights_f3_3_4, weights_f3_3_5_10, weights_f4_4_11} backbone.repeated_bifpn.4.outputs_f0_0_7.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f0_0_7.weight backbone.repeated_bifpn.4.outputs_f1_1_6.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f1_1_6.weight backbone.repeated_bifpn.4.outputs_f1_1_7_8.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f1_1_7_8.weight backbone.repeated_bifpn.4.outputs_f2_2_5.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f2_2_5.weight backbone.repeated_bifpn.4.outputs_f2_2_6_9.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f2_2_6_9.weight backbone.repeated_bifpn.4.outputs_f3_3_4.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f3_3_4.weight backbone.repeated_bifpn.4.outputs_f3_3_5_10.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f3_3_5_10.weight backbone.repeated_bifpn.4.outputs_f4_4_11.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.4.outputs_f4_4_11.weight backbone.repeated_bifpn.4.{weights_f0_0_7, weights_f1_1_6, weights_f1_1_7_8, weights_f2_2_5, weights_f2_2_6_9, weights_f3_3_4, weights_f3_3_5_10, weights_f4_4_11} backbone.repeated_bifpn.5.outputs_f0_0_7.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f0_0_7.weight backbone.repeated_bifpn.5.outputs_f1_1_6.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f1_1_6.weight backbone.repeated_bifpn.5.outputs_f1_1_7_8.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f1_1_7_8.weight backbone.repeated_bifpn.5.outputs_f2_2_5.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f2_2_5.weight backbone.repeated_bifpn.5.outputs_f2_2_6_9.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f2_2_6_9.weight backbone.repeated_bifpn.5.outputs_f3_3_4.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f3_3_4.weight backbone.repeated_bifpn.5.outputs_f3_3_5_10.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f3_3_5_10.weight backbone.repeated_bifpn.5.outputs_f4_4_11.norm.{bias, running_mean, running_var, weight} backbone.repeated_bifpn.5.outputs_f4_4_11.weight backbone.repeated_bifpn.5.{weights_f0_0_7, weights_f1_1_6, weights_f1_1_7_8, weights_f2_2_5, weights_f2_2_6_9, weights_f3_3_4, weights_f3_3_5_10, weights_f4_4_11} controller.{bias, weight} controller2.{bias, weight} mask_branch.refine.0.0.weight mask_branch.refine.0.1.{bias, running_mean, running_var, weight} mask_branch.refine.1.0.weight mask_branch.refine.1.1.{bias, running_mean, running_var, weight} mask_branch.refine.2.0.weight mask_branch.refine.2.1.{bias, running_mean, running_var, weight} mask_branch.tower.0.0.weight mask_branch.tower.0.1.{bias, running_mean, running_var, weight} mask_branch.tower.1.0.weight mask_branch.tower.1.1.{bias, running_mean, running_var, weight} mask_branch.tower.2.0.weight mask_branch.tower.2.1.{bias, running_mean, running_var, weight} mask_branch.tower.3.0.weight mask_branch.tower.3.1.{bias, running_mean, running_var, weight} mask_branch.tower.4.{bias, weight} mask_head.maskiou_head.conv.{bias, weight} mask_head.maskiou_head.conv1x1_1.{bias, weight} mask_head.maskiou_head.conv1x1_2.{bias, weight} mask_head.maskiou_head.conv_offset.weight mask_head.maskiou_head.maskiou.{bias, weight} mask_head.maskiou_head.maskiou_deformfcn1.{bias, weight} mask_head.maskiou_head.maskiou_deformfcn2.{bias, weight} mask_head.maskiou_head.maskiou_deformfcn3.{bias, weight} mask_head.maskiou_head.maskiou_deformmask1.weight mask_head.maskiou_head.maskiou_fc1.{bias, weight} mask_head.maskiou_head.maskiou_fc2.{bias, weight} mask_head.{sizes_of_interest, strides} proposal_generator.fcos_head.bbox_pred.{bias, weight} proposal_generator.fcos_head.bbox_tower.0.{bias, weight} proposal_generator.fcos_head.bbox_tower.1.{bias, weight} proposal_generator.fcos_head.bbox_tower.10.{bias, weight} proposal_generator.fcos_head.bbox_tower.3.{bias, weight} proposal_generator.fcos_head.bbox_tower.4.{bias, weight} proposal_generator.fcos_head.bbox_tower.6.{bias, weight} proposal_generator.fcos_head.bbox_tower.7.{bias, weight} proposal_generator.fcos_head.bbox_tower.9.{bias, weight} proposal_generator.fcos_head.cls_logits.{bias, weight} proposal_generator.fcos_head.cls_tower.0.{bias, weight} proposal_generator.fcos_head.cls_tower.1.{bias, weight} proposal_generator.fcos_head.cls_tower.10.{bias, weight} proposal_generator.fcos_head.cls_tower.3.{bias, weight} proposal_generator.fcos_head.cls_tower.4.{bias, weight} proposal_generator.fcos_head.cls_tower.6.{bias, weight} proposal_generator.fcos_head.cls_tower.7.{bias, weight} proposal_generator.fcos_head.cls_tower.9.{bias, weight} proposal_generator.fcos_head.ctrness.{bias, weight} proposal_generator.fcos_head.offset_pred.{bias, weight} proposal_generator.fcos_head.scales.0.scale proposal_generator.fcos_head.scales.1.scale proposal_generator.fcos_head.scales.2.scale proposal_generator.fcos_head.scales.3.scale proposal_generator.fcos_head.scales.4.scale The checkpoint state_dict contains keys that are not used by the model: fc1000.{bias, weight} 0%| | 0/4 [00:00<?, ?it/s]/home/xyw/miniconda3/envs/pytorch111/lib/python3.9/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1646756402876/work/aten/src/ATen/native/TensorShape.cpp:2228.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] {'instances': None} instances 0%| | 0/4 [00:01<?, ?it/s] Traceback (most recent call last): File "/raid/xiayuwei/code/SSIS/demo/demo.py", line 93, in
instances, visualized_output = demo.run_on_image(img)
File "/raid/xiayuwei/code/SSIS/demo/predictor.py", line 83, in run_on_image
instances.pred_masks = instances.pred_masks.numpy()
AttributeError: 'NoneType' object has no attribute 'pred_masks'`