Closed su3inni closed 9 months ago
8%
Lead Scoring and opportunity forecasting
representatives better understand previous customer interactions
decrease workload by implementing chatbot
Commonly Used three
인공지능이 만든 답변을 사용할 때 적절한 동의와 투명성을 보장해야한다.
https://trailhead.salesforce.com/ko/content/learn/modules/get_smart_einstein_feat
- Einstein Bots
- Einstein Predict Builder
- Einstein Next Best Action
- Einstein Discovery
- Einstein GPT
- Einstein Engagement
마케팅 관리자가 마케팅 캠페인 및 채널을 최적화하는 방법에 대한 통찰력과 권장사항 제공 best solution for better engage
39%
- Example of ethical debt : 윤리적 부채
- launching an AI feature after discovering a harmful bias
Bias leads Ethical Challenges
Disparate Impact
Bias는 데이터 수집, 분석, 해석에 영향을 미치는 요인 affect quality (reliability of data)
AI 개발/배포 관련된 윤리적이고 책임있는 관행/프로세스 평가 및 개선
Guiding ethical & responsible use of AI
- Responsible
- Accountable 본인 행동의 영향을 염두하고 피해나 오류를 피하기 위한 정책 seek and leverage feedback for continuous improvement Taking responsibility for one's actions toward customers, partners and society
- Seeking feedback
- mitigate harm
- engaging with 3rd party
- participate industry
- Transparent & Explainability
- explanation of the prediction's rationale ( user's profile, behavior, preference )
- a model card : how the model was created
- model characteristics & performance ( data source, metrics, limitation )
- understand how AI works , what data is use, what outcome produces
- building trust, accountability
- Empowering & Education
- All Skill level to build AI application with clicks, no code
- Free AI education with Trailhead
- Deliver AI research breakthroughs
- ⭐ Inclusive & Diversity 모든 사람의 사회적 가치를 존중하기 ( 다양성 존중 ), 상황에 따라 차별받는 사람이 없도록 보장하는 것이 목표
- support diverse datasets
- consequence scanning Workshops 제품이나 서비스가 사회에 미치는 영향을 조사하고 피해를 예방하는 과정
- build inclusive teams
- Diverse Dataset
- models are fair, accurate, representative of diverse customer
- prevent & mitigate bias , avoid harmful, discriminatory outcomes
36%
얼마나 현실을 반영하는지, 얼마나 안전하고 일관성있는지, 데이터 오류와 이상값이 얼마나 없는지
- Key components
- Accuracy , completeness, consistency : fundamental
- Validity, Uniqueness, Timeliness, Fitness
- Key factor influences the ethical use of AI
- Performance, Accuracy, Reliability
- Data quality assessment
- provides a benchmark for AI predictions : compare predictions/real
- identify and address data : performance & reliability
- data quality assessment 항목
- Accuracy
- Completeness
- Consistency
- Timeliness
Essential data quality dimension
How to Ensure Data Quality
Benefits of High-Quality data
Incomplete data quality ( missing info )
key component of data management strategy
Data Leakage ( Hindsight bias )
Data Insights
1. AI Fundamentals
Machine Learning
Generative AI
Natural Language Processing : NLP
Algorithm
Neural Network
Key benefit of effective Interaction between humans and ai systems benefits decision making