I am using RASA for my chatbot. It was working with Intel chipset. But for M1 it didnt work. I have searched internet alot. I follow them install tensorflow and numpy but my environment couldnt train my data. Then i searched internet and found this page. I followed the instructions and i hardly create my environment. Then when i press train button again error. Error looks like a mismatch between those packages:
`2022-10-04 12:39:55 ERROR softtechnlp.server - Traceback (most recent call last):
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/server.py", line 1062, in train
training_result = await train_async(training_payload)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 169, in train_async
return await _train_async_internal(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 361, in _train_async_internal
await _do_training(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 407, in _do_training
model_path = await _train_nlu_with_validated_data(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 841, in _train_nlu_with_validated_data
await softtechnlp.nlu.train(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/train.py", line 116, in train
interpreter = trainer.train(training_data, kwargs)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/model.py", line 210, in train
updates = component.train(working_data, self.config, context)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/sf/nlu/model.py", line 342, in train
super().train(training_data, config, kwargs)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/classifiers/diet_classifier.py", line 832, in train
self.model.fit(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 224, in fit
) = self._get_tf_train_functions(eager, model_data, batch_strategy)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 489, in _get_tf_train_functions
self._get_tf_call_model_function(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 472, in _get_tf_call_model_function
tf_call_model_function(next(iter(init_dataset)))
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_file9g8h7p4r.py", line 11, in tftrain_on_batch
prediction_loss = ag.converted_call(ag__.ld(self).batch_loss, (ag.ld(batch_in),), None, fscope)
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_fileubdqh00g.py", line 23, in tfbatch_loss
(text_transformed, text_in, text_seq_ids, lm_mask_booltext, ) = ag.converted_call(ag.ld(self)._create_sequence, (ag.ld(tf_batch_data)[ag.ld(TEXT)][ag.ld(SEQUENCE)], ag.ld(tf_batch_data)[ag.ld(TEXT)][ag.ld(SENTENCE)], ag.ld(mask_sequence_text), ag__.ld(mask_text), ag.ld(self).text_name), dict(sparse_dropout=ag.ld(self).config[ag.ld(SPARSE_INPUT_DROPOUT)], dense_dropout=ag.ld(self).config[ag.ld(DENSE_INPUT_DROPOUT)], masked_lm_loss=ag.ld(self).config[ag.ld(MASKED_LM)], sequence_ids=True), fscope)
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filemw2bj9mv.py", line 27, in tf___create_sequence
inputs = ag.converted_call(ag.ld(self)._combine_sequence_sentence_features, (ag.ld(sequence_features), ag.ld(sentence_features), ag__.ld(mask_sequence), ag.ld(mask), ag.ld(name), ag.ld(sparse_dropout), ag.ld(dense_dropout)), None, fscope)
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/__autograph_generatedfile2l1w562x.py", line 10, in tfcombine_sequence_sentence_features
sequence_x = ag.converted_call(ag.ld(self)._combine_sparse_dense_features, (ag.ld(sequence_features), f'{ag.ld(name)}_{ag.ld(SEQUENCE)}', ag.ld(mask_sequence), ag.ld(sparse_dropout), ag__.ld(dense_dropout)), None, fscope)
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 119, in tf_combine_sparse_dense_features
ag.if_stmt(ag.not_(ag.ld(features)), if_body_4, else_body_4, get_state_5, set_state_5, ('doreturn', 'retval'), 2)
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 88, in else_body_4
ag__.for_stmt(ag.ld(features), None, loop_body, get_state_3, set_state_3, (), {'iterate_names': 'f'})
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 84, in loop_body
ag__.if_stmt(ag.converted_call(ag.ld(isinstance), (ag.ld(f), ag.ld(tf).SparseTensor), None, fscope), if_body_2, else_body_2, get_state_2, set_state_2, (), 0)
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 62, in if_body_2
ag.if_stmt(ag.ld(sparse_dropout), if_body, else_body, get_state, set_state, ('_f',), 1)
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 57, in if_body
_f = ag__.converted_call(ag.ld(self)._tf_layers[f'sparse_input_dropout.{ag.ld(name)}'], (ag.ld(f), ag.ld(self)._training), None, fscope)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/__autograph_generated_fileqluryb_j.py", line 67, in tfcall
outputs = ag.converted_call(ag.ld(tf_utils).smart_cond, (ag.ld(training), ag__.ld(dropped_inputs), ag.autograph_artifact(lambda : ag__.converted_call(ag.ld(tf).identity, (ag.ld(inputs),), None, fscope))), None, fscope)
AttributeError: in user code:
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 298, in train_on_batch *
prediction_loss = self.batch_loss(batch_in)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/classifiers/diet_classifier.py", line 1448, in batch_loss *
(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 1066, in _create_sequence *
inputs = self._combine_sequence_sentence_features(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 960, in _combine_sequence_sentence_features *
sequence_x = self._combine_sparse_dense_features(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 928, in _combine_sparse_dense_features *
_f = self._tf_layers[f"sparse_input_dropout.{name}"](
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler **
raise e.with_traceback(filtered_tb) from None
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/__autograph_generated_fileqluryb_j.py", line 67, in tf__call
outputs = ag__.converted_call(ag__.ld(tf_utils).smart_cond, (ag__.ld(training), ag__.ld(dropped_inputs), ag__.autograph_artifact(lambda : ag__.converted_call(ag__.ld(tf).identity, (ag__.ld(inputs),), None, fscope))), None, fscope)
AttributeError: Exception encountered when calling layer "sparse_dropout_1" (type SparseDropout).
in user code:
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/layers.py", line 64, in call *
outputs = tf_utils.smart_cond(
AttributeError: module 'tensorflow.python.keras.utils.tf_utils' has no attribute 'smart_cond'
Call arguments received by layer "sparse_dropout_1" (type SparseDropout):
• inputs=<tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x2c2d6d640>
• training=True
2022-10-04 12:39:55 ERROR softtechnlp.server - An unexpected error occurred during training. Error: in user code:
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 298, in train_on_batch *
prediction_loss = self.batch_loss(batch_in)
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/classifiers/diet_classifier.py", line 1448, in batch_loss *
(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 1066, in _create_sequence *
inputs = self._combine_sequence_sentence_features(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 960, in _combine_sequence_sentence_features *
sequence_x = self._combine_sparse_dense_features(
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 928, in _combine_sparse_dense_features *
_f = self._tf_layers[f"sparse_input_dropout.{name}"](
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler **
raise e.with_traceback(filtered_tb) from None
File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/__autograph_generated_fileqluryb_j.py", line 67, in tf__call
outputs = ag__.converted_call(ag__.ld(tf_utils).smart_cond, (ag__.ld(training), ag__.ld(dropped_inputs), ag__.autograph_artifact(lambda : ag__.converted_call(ag__.ld(tf).identity, (ag__.ld(inputs),), None, fscope))), None, fscope)
AttributeError: Exception encountered when calling layer "sparse_dropout_1" (type SparseDropout).
in user code:
File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/layers.py", line 64, in call *
outputs = tf_utils.smart_cond(
AttributeError: module 'tensorflow.python.keras.utils.tf_utils' has no attribute 'smart_cond'
Call arguments received by layer "sparse_dropout_1" (type SparseDropout):
• inputs=<tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x2c2d6d640>
• training=True
I have my toml file for the project like: build-system]
requires = [ "poetry-core>=1.0.0",]
build-backend = "poetry.core.masonry.api"
This question seems to have nothing to do with building the whl file, here only discusses how to build the whl, and does not discuss other bugs and usages.
I am using RASA for my chatbot. It was working with Intel chipset. But for M1 it didnt work. I have searched internet alot. I follow them install tensorflow and numpy but my environment couldnt train my data. Then i searched internet and found this page. I followed the instructions and i hardly create my environment. Then when i press train button again error. Error looks like a mismatch between those packages: `2022-10-04 12:39:55 ERROR softtechnlp.server - Traceback (most recent call last): File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/server.py", line 1062, in train training_result = await train_async(training_payload) File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 169, in train_async return await _train_async_internal( File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 361, in _train_async_internal await _do_training( File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 407, in _do_training model_path = await _train_nlu_with_validated_data( File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/train.py", line 841, in _train_nlu_with_validated_data await softtechnlp.nlu.train( File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/train.py", line 116, in train interpreter = trainer.train(training_data, kwargs) File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/model.py", line 210, in train updates = component.train(working_data, self.config, context) File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/sf/nlu/model.py", line 342, in train super().train(training_data, config, kwargs) File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/nlu/classifiers/diet_classifier.py", line 832, in train self.model.fit( File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 224, in fit ) = self._get_tf_train_functions(eager, model_data, batch_strategy) File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 489, in _get_tf_train_functions self._get_tf_call_model_function( File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/softtechnlp/utils/tensorflow/models.py", line 472, in _get_tf_call_model_function tf_call_model_function(next(iter(init_dataset))) File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler raise e.with_traceback(filtered_tb) from None File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_file9g8h7p4r.py", line 11, in tftrain_on_batch prediction_loss = ag.converted_call(ag__.ld(self).batch_loss, (ag.ld(batch_in),), None, fscope) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_fileubdqh00g.py", line 23, in tfbatch_loss (text_transformed, text_in, text_seq_ids, lm_mask_booltext, ) = ag.converted_call(ag.ld(self)._create_sequence, (ag.ld(tf_batch_data)[ag.ld(TEXT)][ag.ld(SEQUENCE)], ag.ld(tf_batch_data)[ag.ld(TEXT)][ag.ld(SENTENCE)], ag.ld(mask_sequence_text), ag__.ld(mask_text), ag.ld(self).text_name), dict(sparse_dropout=ag.ld(self).config[ag.ld(SPARSE_INPUT_DROPOUT)], dense_dropout=ag.ld(self).config[ag.ld(DENSE_INPUT_DROPOUT)], masked_lm_loss=ag.ld(self).config[ag.ld(MASKED_LM)], sequence_ids=True), fscope) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filemw2bj9mv.py", line 27, in tf___create_sequence inputs = ag.converted_call(ag.ld(self)._combine_sequence_sentence_features, (ag.ld(sequence_features), ag.ld(sentence_features), ag__.ld(mask_sequence), ag.ld(mask), ag.ld(name), ag.ld(sparse_dropout), ag.ld(dense_dropout)), None, fscope) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/__autograph_generatedfile2l1w562x.py", line 10, in tfcombine_sequence_sentence_features sequence_x = ag.converted_call(ag.ld(self)._combine_sparse_dense_features, (ag.ld(sequence_features), f'{ag.ld(name)}_{ag.ld(SEQUENCE)}', ag.ld(mask_sequence), ag.ld(sparse_dropout), ag__.ld(dense_dropout)), None, fscope) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 119, in tf_combine_sparse_dense_features ag.if_stmt(ag.not_(ag.ld(features)), if_body_4, else_body_4, get_state_5, set_state_5, ('doreturn', 'retval'), 2) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 88, in else_body_4 ag__.for_stmt(ag.ld(features), None, loop_body, get_state_3, set_state_3, (), {'iterate_names': 'f'}) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 84, in loop_body ag__.if_stmt(ag.converted_call(ag.ld(isinstance), (ag.ld(f), ag.ld(tf).SparseTensor), None, fscope), if_body_2, else_body_2, get_state_2, set_state_2, (), 0) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 62, in if_body_2 ag.if_stmt(ag.ld(sparse_dropout), if_body, else_body, get_state, set_state, ('_f',), 1) File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/autograph_generated_filedqt8w5sf.py", line 57, in if_body _f = ag__.converted_call(ag.ld(self)._tf_layers[f'sparse_input_dropout.{ag.ld(name)}'], (ag.ld(f), ag.ld(self)._training), None, fscope) File "/Users/sadikalperbilgil/miniforge3/envs/envNLPV2arm2/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler raise e.with_traceback(filtered_tb) from None File "/var/folders/3r/lscxbw557b37671_q_xn6d300000gp/T/__autograph_generated_fileqluryb_j.py", line 67, in tfcall outputs = ag.converted_call(ag.ld(tf_utils).smart_cond, (ag.ld(training), ag__.ld(dropped_inputs), ag.autograph_artifact(lambda : ag__.converted_call(ag.ld(tf).identity, (ag.ld(inputs),), None, fscope))), None, fscope) AttributeError: in user code:
2022-10-04 12:39:55 ERROR softtechnlp.server - An unexpected error occurred during training. Error: in user code:
I have my toml file for the project like:
build-system] requires = [ "poetry-core>=1.0.0",] build-backend = "poetry.core.masonry.api"[tool.black] line-length = 88 target-version = [ "py36", "py37", "py38","py39"] exclude = "((.eggs | .git | .pytest_cache | build | dist))"
[tool.poetry] name = "softtechnlp" version = "2.3.3.2.dev" description = "Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants" authors = [ "",] maintainers = [ "",] homepage = "" repository = "" documentation = "" classifiers = [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Software Development :: Libraries",] keywords = [ "nlp", "machine-learning", "machine-learning-library", "bot", "bots", "botkit", "conversational-agents", "conversational-ai", "chatbot", "chatbot-framework", "bot-framework",] include = [ "LICENSE.txt", "README.md",] readme = "README.md" license = "Apache-2.0"
[tool.towncrier] package = "softtechnlp" package_dir = "softtechnlp" filename = "CHANGELOG.mdx" directory = "./changelog" underlines = " " title_format = "## [{version}] - {project_date}" template = "./changelog/_template.md.jinja2" start_string = "\n" issue_format = "" [[tool.towncrier.type]] directory = "removal" name = "Deprecations and Removals" showcontent = true
[[tool.towncrier.type]] directory = "feature" name = "Features" showcontent = true
[[tool.towncrier.type]] directory = "improvement" name = "Improvements" showcontent = true
[[tool.towncrier.type]] directory = "bugfix" name = "Bugfixes" showcontent = true
[[tool.towncrier.type]] directory = "doc" name = "Improved Documentation" showcontent = true
[[tool.towncrier.type]] directory = "misc" name = "Miscellaneous internal changes" showcontent = false
[tool.poetry.dependencies] python = ">=3.6,<3.10" boto3 = "^1.12" requests = "^2.23" requests_futures = "^1.0.0" fuzzy_matcher = "^0.1.0" fuzzywuzzy = "0.18.0" sgqlc = "^14.1" pypred = { git = "https://git@github.com/dialoguemd/pypred.git", rev = "7e30c9078e8a34a4ba3ecf96c6ea826173b25063" } matplotlib = ">=3.1,<3.4" attrs = ">=19.3,<20.4" jsonpickle = ">=1.3,<1.6" redis = "^3.4" numpy = [{version = ">=1.23", markers = "sys_platform!='darwin'"},{version = "=1.19.5", markers = "sys_platform=='darwin'"}] scipy = "^1.4.1" absl-py = ">=0.9,<0.12" apscheduler = ">=3.6,<3.8" tqdm = ">=4.31,<4.57" networkx = ">=2.4,<2.6" fbmessenger = "~6.0.0" pykwalify = ">=1.7,<1.9" coloredlogs = ">=10,<15" "ruamel.yaml" = "^0.16.5" scikit-learn = { version = ">=0.22,<0.25", markers="platform_machine != 'arm64'"} slackclient = "^2.0.0" twilio = ">=6.26,<6.51" webexteamssdk = ">=1.1.1,<1.7.0" mattermostwrapper = "~2.2" rocketchat_API = ">=0.6.31,<1.10.0" colorhash = "~1.0.2" jsonschema = "~3.2" packaging = ">=20.0,<21.0" pytz = ">=2019.1,<2021.0" softtechnlp-sdk = "^2.3.1" colorclass = "~2.2" terminaltables = "~3.1.0" sanic = ">=19.12.2,<21.0.0" sanic-cors = "~0.10.0b1" sanic-jwt = ">=1.3.2,<2.0" cloudpickle = ">=1.2,<1.7" multidict = "^4.6" aiohttp = "~3.6" questionary = "~1.5.1" prompt-toolkit = "^2.0" python-socketio = ">=5,<6" python-engineio = ">=4,<5" pydot = "~1.4" async_generator = "~1.10" SQLAlchemy = "~1.3.3" sklearn-crfsuite = "~0.3" psycopg2-binary = "~2.8.2" python-dateutil = "~2.8" tensorflow = { version = "~2.8.2", markers="platform_machine != 'arm64'"} tensorflow-text = [{ version = "~2.8.0", markers = "sys_platform!='win32' and sys_platform!='darwin'"}] tensorflow_hub = [{ version = "~2.8.0", markers = "sys_platform!='win32' and sys_platform!='darwin'"}] tensorflow-addons = [{version = "~0.10", markers="sys_platform!='darwin'"},] tensorflow-estimator = [{version = "~2.6", markers="sys_platform!='darwin'"},] tensorflow-probability = [{version = "~0.11", markers="sys_platform!='darwin'"},] setuptools = ">=41.0.0" kafka-python = ">=1.4,<3.0" ujson = ">=1.35,<5.0" oauth2client = "4.1.3" regex = ">=2020.6,<2020.10" joblib = "^0.15.1" sentry-sdk = ">=0.17.0,<0.20.0" aio-pika = "^6.7.1" pyTelegramBotAPI = "^3.7.3" prometheus-client = "^0.8.0" instana = "^1.37.4" python-dotenv = "^0.20.0" fasttext = "^0.9.2" spacymoji = "2.0.0" spacy = { version = "2.3.0", markers="sys_platform!='darwin'"} grpcio= ">=1.45.0"
[tool.poetry.dev-dependencies] pytest-cov = "^2.10.0" pytest-localserver = "^0.5.0" pytest-sanic = "^1.6.1" pytest-asyncio = "^0.10.0" pytest-xdist = "^1.32.0" pytest = "^5.3.4" freezegun = "^1.0.0" responses = "^0.12.1" aioresponses = "^0.6.2" moto = "~=1.3.16" fakeredis = "^1.4.0" mongomock = "^3.18.0" black = "^19.10b0" flake8 = "^3.8.3" flake8-docstrings = "^1.5.0" google-cloud-storage = "^1.29.0" azure-storage-blob = "<12.6.0" coveralls = "^2.0.0" towncrier = "^19.2.0" toml = "^0.10.0" pep440-version-utils = "^0.3.0" pydoc-markdown = "^3.5.0" pytest-timeout = "^1.4.2" mypy = "^0.790" bandit = "^1.6.3"
[tool.poetry.extras] jieba = [ "jieba",] transformers = [ "transformers",] full = [ "transformers", "jieba",] gh-release-notes = [ "github3.py",]
[tool.poetry.scripts] softtechnlp = "softtechnlp.main:main"
[tool.poetry.dependencies.PyJWT] version = "^2.0.0" extras = [ "crypto",]
[tool.poetry.dependencies.colorama] version = "^0.4.4" markers = "sys_platform == 'win32'"
[tool.poetry.dependencies."github3.py"] version = "~1.3.0" optional = true
[tool.poetry.dependencies.transformers] version = ">=2.4,<2.12" optional = true
[tool.poetry.dependencies.jieba] version = ">=0.39, <0.43" optional = true
[tool.poetry.dependencies.pymongo] version = ">=3.8,<3.11" extras = [ "tls", "srv",] `
As you can see i installed tensorflow-macos metal addons and text manually with the instructions on this page. Now i am stuck.
Can you have any insight?