When trying to either test or predict, I run into the an error. I'm new to DyNet but something similar happens here: https://github.com/clab/dynet/issues/1221 to which @neubig suggests:
This sort of error normally happens when you have a different model defined at training and test time. I'd make sure that you're calling exactly the same constructor code during training and test.
ERROR:
Reading model from logs/fn1.7-pretrained-targetid/best-targetid-1.7-model ...
Traceback (most recent call last):
File "/usr/lib64/python2.7/runpy.py", line 162, in _run_module_as_main
"main", fname, loader, pkg_name)
File "/usr/lib64/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/nas/home/thawani/MCS/open-sesame/sesame/targetid.py", line 431, in
model.populate(model_file_name)
File "_dynet.pyx", line 1461, in _dynet.ParameterCollection.populate
File "_dynet.pyx", line 1516, in _dynet.ParameterCollection.populate_from_textfile
RuntimeError: Number of parameter/lookup parameter objects loaded from file (20/4) did not match number to be populated (20/5)
When trying to either test or predict, I run into the an error. I'm new to DyNet but something similar happens here: https://github.com/clab/dynet/issues/1221 to which @neubig suggests:
ERROR:
Reading model from logs/fn1.7-pretrained-targetid/best-targetid-1.7-model ... Traceback (most recent call last): File "/usr/lib64/python2.7/runpy.py", line 162, in _run_module_as_main "main", fname, loader, pkg_name) File "/usr/lib64/python2.7/runpy.py", line 72, in _run_code exec code in run_globals File "/nas/home/thawani/MCS/open-sesame/sesame/targetid.py", line 431, in
model.populate(model_file_name)
File "_dynet.pyx", line 1461, in _dynet.ParameterCollection.populate
File "_dynet.pyx", line 1516, in _dynet.ParameterCollection.populate_from_textfile
RuntimeError: Number of parameter/lookup parameter objects loaded from file (20/4) did not match number to be populated (20/5)
Here's the log before the error:
[dynet] random seed: 1798024527 [dynet] allocating memory: 512MB [dynet] memory allocation done. DATA_DIRECTORY: data/ DEBUG_MODE: False EMBEDDINGS_FILE: data/glove.6B.100d.txt VERSION: 1.7
COMMAND: /nas/home/thawani/MCS/open-sesame/sesame/targetid.py --mode predict --model_name fn1.7-pretrained-targetid --raw_input raw.txt MODEL FOR TEST / PREDICTION: logs/fn1.7-pretrained-targetid/best-targetid-1.7-model PARSING MODE: predict
Reading data/neural/fn1.7/fn1.7.fulltext.train.syntaxnet.conll ...
examples in data/neural/fn1.7/fn1.7.fulltext.train.syntaxnet.conll : 19391 in 3413 sents
examples with missing arguments : 526
Combined 19391 instances in data into 3413 instances.
Reading the lexical unit index file: data/fndata-1.7/luIndex.xml
unique targets = 9421
total targets = 13572
targets with multiple LUs = 4151
max LUs per target = 5
Reading pretrained embeddings from data/glove.6B.100d.txt ...
PARSER SETTINGS (see logs/fn1.7-pretrained-targetid/configuration.json)
DEV_EVAL_EPOCH_FREQUENCY: 3 DROPOUT_RATE: 0.01 EVAL_AFTER_EVERY_EPOCHS: 100 HIDDEN_DIM: 100 LEMMA_DIM: 100 LSTM_DEPTH: 2 LSTM_DIM: 100 LSTM_INPUT_DIM: 100 NUM_EPOCHS: 100 PATIENCE: 25 POS_DIM: 100 PRETRAINED_EMBEDDING_DIM: 100 TOKEN_DIM: 100 TRAIN: data/neural/fn1.7/fn1.7.fulltext.train.syntaxnet.conll UNK_PROB: 0.1 USE_DROPOUT: True
Tokens = 400574
POS tags = 45
Lemmas = 9349
Command:
python -m sesame.targetid --mode predict --model_name fn1.7-pretrained-targetid --raw_input raw.txt