sweepai / evals

Apache License 2.0
0 stars 0 forks source link

Sweep (sandbox): src/main.py #95

Open kevinlu1248 opened 1 year ago

kevinlu1248 commented 1 year ago

Details

No response

sweep-nightly[bot] commented 1 year ago
Sweeping

100%
💎 Sweep Pro: I'm using GPT-4. You have unlimited GPT-4 tickets. (tracking ID: a3f34edc0d)

![Docker Version Updated](https://img.shields.io/badge/Docker%20Version%20Updated-1%20hours%20ago-blue)

Actions (click)


📖 Reading File

Running sandbox for src/main.py. Current Code:

https://github.com/sweepai/evals/blob/72849082ab1fcf90323a2d3b20d400de0d41ebd9/src/main.py#L1-L48


🛠️ Executing Sandbox


Sandbox logs
pip install -r requirements.txt 1/4 ✓
Looking in links: https://download.pytorch.org/whl/torch_stable.html
DEPRECATION: The HTML index page being used (https://download.pytorch.org/whl/torch_stable.html) is not a proper HTML 5 document. This is in violation of PEP 503 which requires these pages to be well-formed HTML 5 documents. Please reach out to the owners of this index page, and ask them to update this index page to a valid HTML 5 document. pip 22.2 will enforce this behaviour change. Discussion can be found at https://github.com/pypa/pip/issues/10825
Collecting annotated-types==0.6.0
  Downloading annotated_types-0.6.0-py3-none-any.whl (12 kB)
Collecting anyio==3.7.1
  Downloading anyio-3.7.1-py3-none-any.whl (80 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 80.9/80.9 KB 6.2 MB/s eta 0:00:00
Collecting astroid==3.0.1
  Downloading astroid-3.0.1-py3-none-any.whl (275 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 275.2/275.2 KB 47.3 MB/s eta 0:00:00
Collecting certifi==2022.12.7
  Downloading certifi-2022.12.7-py3-none-any.whl (155 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.3/155.3 KB 46.5 MB/s eta 0:00:00
Collecting charset-normalizer==2.1.1
  Downloading charset_normalizer-2.1.1-py3-none-any.whl (39 kB)
Requirement already satisfied: click==8.1.7 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 6)) (8.1.7)
Collecting dill==0.3.7
  Downloading dill-0.3.7-py3-none-any.whl (115 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 115.3/115.3 KB 52.2 MB/s eta 0:00:00
Collecting exceptiongroup==1.1.3
  Downloading exceptiongroup-1.1.3-py3-none-any.whl (14 kB)
Collecting fastapi==0.104.0
  Downloading fastapi-0.104.0-py3-none-any.whl (92 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 92.9/92.9 KB 44.3 MB/s eta 0:00:00
Collecting filelock==3.9.0
  Downloading filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting fsspec==2023.4.0
  Downloading fsspec-2023.4.0-py3-none-any.whl (153 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 154.0/154.0 KB 34.1 MB/s eta 0:00:00
Collecting h11==0.14.0
  Downloading h11-0.14.0-py3-none-any.whl (58 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.3/58.3 KB 24.9 MB/s eta 0:00:00
Requirement already satisfied: idna==3.4 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 13)) (3.4)
Collecting iniconfig==2.0.0
  Downloading iniconfig-2.0.0-py3-none-any.whl (5.9 kB)
Requirement already satisfied: isort==5.12.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 15)) (5.12.0)
Collecting Jinja2==3.1.2
  Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.1/133.1 KB 60.0 MB/s eta 0:00:00
Collecting MarkupSafe==2.1.2
  Downloading MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)
Collecting mccabe==0.7.0
  Downloading mccabe-0.7.0-py2.py3-none-any.whl (7.3 kB)
Collecting mpmath==1.3.0
  Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 KB 54.6 MB/s eta 0:00:00
Collecting networkx==3.0
  Downloading networkx-3.0-py3-none-any.whl (2.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 64.0 MB/s eta 0:00:00
Collecting numpy==1.24.1
  Downloading numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.3/17.3 MB 62.3 MB/s eta 0:00:00
Requirement already satisfied: packaging==23.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 22)) (23.2)
Collecting Pillow==9.3.0
  Downloading Pillow-9.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.3/3.3 MB 74.9 MB/s eta 0:00:00
Requirement already satisfied: platformdirs==3.11.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 24)) (3.11.0)
Collecting pluggy==1.3.0
  Downloading pluggy-1.3.0-py3-none-any.whl (18 kB)
Collecting pydantic==2.4.2
  Downloading pydantic-2.4.2-py3-none-any.whl (395 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 395.8/395.8 KB 23.1 MB/s eta 0:00:00
Collecting pydantic_core==2.10.1
  Downloading pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 55.4 MB/s eta 0:00:00
Collecting pylint==3.0.2
  Downloading pylint-3.0.2-py3-none-any.whl (510 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 510.6/510.6 KB 64.6 MB/s eta 0:00:00
Collecting pytest==7.4.2
  Downloading pytest-7.4.2-py3-none-any.whl (324 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 324.5/324.5 KB 58.8 MB/s eta 0:00:00
Collecting requests==2.28.1
  Downloading requests-2.28.1-py3-none-any.whl (62 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.8/62.8 KB 26.0 MB/s eta 0:00:00
Collecting sniffio==1.3.0
  Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)
Collecting starlette==0.27.0
  Downloading starlette-0.27.0-py3-none-any.whl (66 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 67.0/67.0 KB 32.3 MB/s eta 0:00:00
Collecting sympy==1.12
  Downloading sympy-1.12-py3-none-any.whl (5.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 82.1 MB/s eta 0:00:00
Requirement already satisfied: tomli==2.0.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 34)) (2.0.1)
Collecting tomlkit==0.12.1
  Downloading tomlkit-0.12.1-py3-none-any.whl (37 kB)
Collecting torch==2.1.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torch-2.1.0%2Bcpu-cp310-cp310-linux_x86_64.whl (184.9 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 184.9/184.9 MB 25.2 MB/s eta 0:00:00
Collecting torchaudio==2.1.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torchaudio-2.1.0%2Bcpu-cp310-cp310-linux_x86_64.whl (1.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 66.8 MB/s eta 0:00:00
Collecting torchvision==0.16.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torchvision-0.16.0%2Bcpu-cp310-cp310-linux_x86_64.whl (1.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 62.2 MB/s eta 0:00:00
Requirement already satisfied: typing_extensions==4.8.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 40)) (4.8.0)
Collecting urllib3==1.26.13
  Downloading urllib3-1.26.13-py2.py3-none-any.whl (140 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 140.6/140.6 KB 64.0 MB/s eta 0:00:00
Collecting uvicorn==0.23.2
  Downloading uvicorn-0.23.2-py3-none-any.whl (59 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 59.5/59.5 KB 26.1 MB/s eta 0:00:00
Installing collected packages: mpmath, urllib3, tomlkit, sympy, sniffio, pydantic_core, pluggy, Pillow, numpy, networkx, mccabe, MarkupSafe, iniconfig, h11, fsspec, filelock, exceptiongroup, dill, charset-normalizer, certifi, astroid, annotated-types, uvicorn, requests, pytest, pylint, pydantic, Jinja2, anyio, torch, starlette, torchvision, torchaudio, fastapi
  Attempting uninstall: urllib3
    Found existing installation: urllib3 2.0.7
    Uninstalling urllib3-2.0.7:
      Successfully uninstalled urllib3-2.0.7
  Attempting uninstall: tomlkit
    Found existing installation: tomlkit 0.12.2
    Uninstalling tomlkit-0.12.2:
      Successfully uninstalled tomlkit-0.12.2
  Attempting uninstall: filelock
    Found existing installation: filelock 3.13.1
    Uninstalling filelock-3.13.1:
      Successfully uninstalled filelock-3.13.1
  Attempting uninstall: charset-normalizer
    Found existing installation: charset-normalizer 3.3.2
    Uninstalling charset-normalizer-3.3.2:
      Successfully uninstalled charset-normalizer-3.3.2
  Attempting uninstall: certifi
    Found existing installation: certifi 2023.7.22
    Uninstalling certifi-2023.7.22:
      Successfully uninstalled certifi-2023.7.22
  Attempting uninstall: requests
    Found existing installation: requests 2.31.0
    Uninstalling requests-2.31.0:
      Successfully uninstalled requests-2.31.0
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
virtualenv 20.24.6 requires filelock<4,>=3.12.2, but you have filelock 3.9.0 which is incompatible.
Successfully installed Jinja2-3.1.2 MarkupSafe-2.1.2 Pillow-9.3.0 annotated-types-0.6.0 anyio-3.7.1 astroid-3.0.1 certifi-2022.12.7 charset-normalizer-2.1.1 dill-0.3.7 exceptiongroup-1.1.3 fastapi-0.104.0 filelock-3.9.0 fsspec-2023.4.0 h11-0.14.0 iniconfig-2.0.0 mccabe-0.7.0 mpmath-1.3.0 networkx-3.0 numpy-1.24.1 pluggy-1.3.0 pydantic-2.4.2 pydantic_core-2.10.1 pylint-3.0.2 pytest-7.4.2 requests-2.28.1 sniffio-1.3.0 starlette-0.27.0 sympy-1.12 tomlkit-0.12.1 torch-2.1.0+cpu torchaudio-2.1.0+cpu torchvision-0.16.0+cpu urllib3-1.26.13 uvicorn-0.23.2
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
trunk init 2/4 ✓
⥿ Downloading Trunk 1.17.2...
⥿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣝ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣞ Downloading Trunk 1.17.2...
⣡ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
⣟ Downloading Trunk 1.17.2...
⥿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣝ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣞ Downloading Trunk 1.17.2...
⣡ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
⣟ Downloading Trunk 1.17.2...
⥿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣝ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣞ Downloading Trunk 1.17.2...
⣡ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
⣟ Downloading Trunk 1.17.2...
⥿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣝ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣞ Downloading Trunk 1.17.2...
⣡ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
✔ Downloading Trunk 1.17.2... done
⥿ Verifying Trunk sha256...
✔ Verifying Trunk sha256... done
⥿ Unpacking Trunk...
✔ Unpacking Trunk... done

✔ 13 linters were enabled (.trunk/trunk.yaml)
  actionlint 1.6.26 (2 github-workflow files)
  bandit 1.7.5 (2 python files)
  black 23.9.1 (2 python files)
  checkov 3.1.9 (5 yaml files)
  git-diff-check (12 files)
  isort 5.12.0 (2 python files) (created .isort.cfg)
  markdownlint 0.37.0 (1 markdown file) (created .markdownlint.yaml)
  osv-scanner 1.4.3 (1 lockfile file)
  prettier 3.1.0 (1 markdown, 5 yaml files)
  ruff 0.1.6 (2 python files) (created ruff.toml)
  trivy 0.47.0 (5 yaml files)
  trufflehog 3.63.2-rc0 (12 files)
  yamllint 1.33.0 (5 yaml files) (created .yamllint.yaml)
Next Steps
 1. Read documentation
    Our documentation can be found at https://docs.trunk.io
 2. Get help and give feedback
    Join the Trunk community at https://slack.trunk.io
trunk fmt src/main.py || exit 0 3/4 ✓
 ✔ Formatted src/main.py
Re-checking autofixed files...

 ✔ Formatted src/main.py
Re-checking autofixed files...

Checked 1 file
✔ No issues
trunk check --fix --filter=-ruff --print-failures src/main.py 4/4 ✓
Checked 1 file
✔ No issues

Updated Code:

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose(
    [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)

# Step 2: Define the PyTorch Model
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(28 * 28, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return nn.functional.log_softmax(x, dim=1)

# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
    for images, labels in trainloader:
        optimizer.zero_grad()
        output = model(images)
        loss = criterion(output, labels)
        loss.backward()
        optimizer.step()

torch.save(model.state_dict(), "mnist_model.pth")

Diff:

--- 
+++ 
@@ -1,19 +1,19 @@
-from PIL import Image
+import numpy as np
 import torch
 import torch.nn as nn
 import torch.optim as optim
+from PIL import Image
+from torch.utils.data import DataLoader
 from torchvision import datasets, transforms
-from torch.utils.data import DataLoader
-import numpy as np

 # Step 1: Load MNIST Data and Preprocess
-transform = transforms.Compose([
-    transforms.ToTensor(),
-    transforms.Normalize((0.5,), (0.5,))
-])
+transform = transforms.Compose(
+    [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
+)

-trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
+trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
 trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
+

 # Step 2: Define the PyTorch Model
 class Net(nn.Module):
@@ -22,13 +22,14 @@
         self.fc1 = nn.Linear(28 * 28, 128)
         self.fc2 = nn.Linear(128, 64)
         self.fc3 = nn.Linear(64, 10)
-    
+
     def forward(self, x):
         x = x.view(-1, 28 * 28)
         x = nn.functional.relu(self.fc1(x))
         x = nn.functional.relu(self.fc2(x))
         x = self.fc3(x)
         return nn.functional.log_softmax(x, dim=1)
+

 # Step 3: Train the Model
 model = Net()

🎉 Latest improvements to Sweep:


💡 To recreate the pull request edit the issue title or description. To tweak the pull request, leave a comment on the pull request. Join Our Discord