Open kevinlu1248 opened 1 year ago
a3f34edc0d
)Running sandbox for src/main.py. Current Code:
https://github.com/sweepai/evals/blob/72849082ab1fcf90323a2d3b20d400de0d41ebd9/src/main.py#L1-L48
pip install -r requirements.txt
1/4 âLooking in links: https://download.pytorch.org/whl/torch_stable.html DEPRECATION: The HTML index page being used (https://download.pytorch.org/whl/torch_stable.html) is not a proper HTML 5 document. This is in violation of PEP 503 which requires these pages to be well-formed HTML 5 documents. Please reach out to the owners of this index page, and ask them to update this index page to a valid HTML 5 document. pip 22.2 will enforce this behaviour change. Discussion can be found at https://github.com/pypa/pip/issues/10825 Collecting annotated-types==0.6.0 Downloading annotated_types-0.6.0-py3-none-any.whl (12 kB) Collecting anyio==3.7.1 Downloading anyio-3.7.1-py3-none-any.whl (80 kB) ââââââââââââââââââââââââââââââââââââââââ 80.9/80.9 KB 6.2 MB/s eta 0:00:00 Collecting astroid==3.0.1 Downloading astroid-3.0.1-py3-none-any.whl (275 kB) ââââââââââââââââââââââââââââââââââââââ 275.2/275.2 KB 47.3 MB/s eta 0:00:00 Collecting certifi==2022.12.7 Downloading certifi-2022.12.7-py3-none-any.whl (155 kB) ââââââââââââââââââââââââââââââââââââââ 155.3/155.3 KB 46.5 MB/s eta 0:00:00 Collecting charset-normalizer==2.1.1 Downloading charset_normalizer-2.1.1-py3-none-any.whl (39 kB) Requirement already satisfied: click==8.1.7 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 6)) (8.1.7) Collecting dill==0.3.7 Downloading dill-0.3.7-py3-none-any.whl (115 kB) ââââââââââââââââââââââââââââââââââââââ 115.3/115.3 KB 52.2 MB/s eta 0:00:00 Collecting exceptiongroup==1.1.3 Downloading exceptiongroup-1.1.3-py3-none-any.whl (14 kB) Collecting fastapi==0.104.0 Downloading fastapi-0.104.0-py3-none-any.whl (92 kB) ââââââââââââââââââââââââââââââââââââââââ 92.9/92.9 KB 44.3 MB/s eta 0:00:00 Collecting filelock==3.9.0 Downloading filelock-3.9.0-py3-none-any.whl (9.7 kB) Collecting fsspec==2023.4.0 Downloading fsspec-2023.4.0-py3-none-any.whl (153 kB) ââââââââââââââââââââââââââââââââââââââ 154.0/154.0 KB 34.1 MB/s eta 0:00:00 Collecting h11==0.14.0 Downloading h11-0.14.0-py3-none-any.whl (58 kB) ââââââââââââââââââââââââââââââââââââââââ 58.3/58.3 KB 24.9 MB/s eta 0:00:00 Requirement already satisfied: idna==3.4 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 13)) (3.4) Collecting iniconfig==2.0.0 Downloading iniconfig-2.0.0-py3-none-any.whl (5.9 kB) Requirement already satisfied: isort==5.12.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 15)) (5.12.0) Collecting Jinja2==3.1.2 Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB) ââââââââââââââââââââââââââââââââââââââ 133.1/133.1 KB 60.0 MB/s eta 0:00:00 Collecting MarkupSafe==2.1.2 Downloading MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB) Collecting mccabe==0.7.0 Downloading mccabe-0.7.0-py2.py3-none-any.whl (7.3 kB) Collecting mpmath==1.3.0 Downloading mpmath-1.3.0-py3-none-any.whl (536 kB) ââââââââââââââââââââââââââââââââââââââ 536.2/536.2 KB 54.6 MB/s eta 0:00:00 Collecting networkx==3.0 Downloading networkx-3.0-py3-none-any.whl (2.0 MB) ââââââââââââââââââââââââââââââââââââââââ 2.0/2.0 MB 64.0 MB/s eta 0:00:00 Collecting numpy==1.24.1 Downloading numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB) ââââââââââââââââââââââââââââââââââââââââ 17.3/17.3 MB 62.3 MB/s eta 0:00:00 Requirement already satisfied: packaging==23.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 22)) (23.2) Collecting Pillow==9.3.0 Downloading Pillow-9.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.3 MB) ââââââââââââââââââââââââââââââââââââââââ 3.3/3.3 MB 74.9 MB/s eta 0:00:00 Requirement already satisfied: platformdirs==3.11.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 24)) (3.11.0) Collecting pluggy==1.3.0 Downloading pluggy-1.3.0-py3-none-any.whl (18 kB) Collecting pydantic==2.4.2 Downloading pydantic-2.4.2-py3-none-any.whl (395 kB) ââââââââââââââââââââââââââââââââââââââ 395.8/395.8 KB 23.1 MB/s eta 0:00:00 Collecting pydantic_core==2.10.1 Downloading pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB) ââââââââââââââââââââââââââââââââââââââââ 2.0/2.0 MB 55.4 MB/s eta 0:00:00 Collecting pylint==3.0.2 Downloading pylint-3.0.2-py3-none-any.whl (510 kB) ââââââââââââââââââââââââââââââââââââââ 510.6/510.6 KB 64.6 MB/s eta 0:00:00 Collecting pytest==7.4.2 Downloading pytest-7.4.2-py3-none-any.whl (324 kB) ââââââââââââââââââââââââââââââââââââââ 324.5/324.5 KB 58.8 MB/s eta 0:00:00 Collecting requests==2.28.1 Downloading requests-2.28.1-py3-none-any.whl (62 kB) ââââââââââââââââââââââââââââââââââââââââ 62.8/62.8 KB 26.0 MB/s eta 0:00:00 Collecting sniffio==1.3.0 Downloading sniffio-1.3.0-py3-none-any.whl (10 kB) Collecting starlette==0.27.0 Downloading starlette-0.27.0-py3-none-any.whl (66 kB) ââââââââââââââââââââââââââââââââââââââââ 67.0/67.0 KB 32.3 MB/s eta 0:00:00 Collecting sympy==1.12 Downloading sympy-1.12-py3-none-any.whl (5.7 MB) ââââââââââââââââââââââââââââââââââââââââ 5.7/5.7 MB 82.1 MB/s eta 0:00:00 Requirement already satisfied: tomli==2.0.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 34)) (2.0.1) Collecting tomlkit==0.12.1 Downloading tomlkit-0.12.1-py3-none-any.whl (37 kB) Collecting torch==2.1.0+cpu Downloading https://download.pytorch.org/whl/cpu/torch-2.1.0%2Bcpu-cp310-cp310-linux_x86_64.whl (184.9 MB) ââââââââââââââââââââââââââââââââââââââ 184.9/184.9 MB 25.2 MB/s eta 0:00:00 Collecting torchaudio==2.1.0+cpu Downloading https://download.pytorch.org/whl/cpu/torchaudio-2.1.0%2Bcpu-cp310-cp310-linux_x86_64.whl (1.6 MB) ââââââââââââââââââââââââââââââââââââââââ 1.6/1.6 MB 66.8 MB/s eta 0:00:00 Collecting torchvision==0.16.0+cpu Downloading https://download.pytorch.org/whl/cpu/torchvision-0.16.0%2Bcpu-cp310-cp310-linux_x86_64.whl (1.6 MB) ââââââââââââââââââââââââââââââââââââââââ 1.6/1.6 MB 62.2 MB/s eta 0:00:00 Requirement already satisfied: typing_extensions==4.8.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 40)) (4.8.0) Collecting urllib3==1.26.13 Downloading urllib3-1.26.13-py2.py3-none-any.whl (140 kB) ââââââââââââââââââââââââââââââââââââââ 140.6/140.6 KB 64.0 MB/s eta 0:00:00 Collecting uvicorn==0.23.2 Downloading uvicorn-0.23.2-py3-none-any.whl (59 kB) ââââââââââââââââââââââââââââââââââââââââ 59.5/59.5 KB 26.1 MB/s eta 0:00:00 Installing collected packages: mpmath, urllib3, tomlkit, sympy, sniffio, pydantic_core, pluggy, Pillow, numpy, networkx, mccabe, MarkupSafe, iniconfig, h11, fsspec, filelock, exceptiongroup, dill, charset-normalizer, certifi, astroid, annotated-types, uvicorn, requests, pytest, pylint, pydantic, Jinja2, anyio, torch, starlette, torchvision, torchaudio, fastapi Attempting uninstall: urllib3 Found existing installation: urllib3 2.0.7 Uninstalling urllib3-2.0.7: Successfully uninstalled urllib3-2.0.7 Attempting uninstall: tomlkit Found existing installation: tomlkit 0.12.2 Uninstalling tomlkit-0.12.2: Successfully uninstalled tomlkit-0.12.2 Attempting uninstall: filelock Found existing installation: filelock 3.13.1 Uninstalling filelock-3.13.1: Successfully uninstalled filelock-3.13.1 Attempting uninstall: charset-normalizer Found existing installation: charset-normalizer 3.3.2 Uninstalling charset-normalizer-3.3.2: Successfully uninstalled charset-normalizer-3.3.2 Attempting uninstall: certifi Found existing installation: certifi 2023.7.22 Uninstalling certifi-2023.7.22: Successfully uninstalled certifi-2023.7.22 Attempting uninstall: requests Found existing installation: requests 2.31.0 Uninstalling requests-2.31.0: Successfully uninstalled requests-2.31.0 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. virtualenv 20.24.6 requires filelock<4,>=3.12.2, but you have filelock 3.9.0 which is incompatible. Successfully installed Jinja2-3.1.2 MarkupSafe-2.1.2 Pillow-9.3.0 annotated-types-0.6.0 anyio-3.7.1 astroid-3.0.1 certifi-2022.12.7 charset-normalizer-2.1.1 dill-0.3.7 exceptiongroup-1.1.3 fastapi-0.104.0 filelock-3.9.0 fsspec-2023.4.0 h11-0.14.0 iniconfig-2.0.0 mccabe-0.7.0 mpmath-1.3.0 networkx-3.0 numpy-1.24.1 pluggy-1.3.0 pydantic-2.4.2 pydantic_core-2.10.1 pylint-3.0.2 pytest-7.4.2 requests-2.28.1 sniffio-1.3.0 starlette-0.27.0 sympy-1.12 tomlkit-0.12.1 torch-2.1.0+cpu torchaudio-2.1.0+cpu torchvision-0.16.0+cpu urllib3-1.26.13 uvicorn-0.23.2 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
trunk init
2/4 â⥿ Downloading Trunk 1.17.2... ⥿ Downloading Trunk 1.17.2... ⢿ Downloading Trunk 1.17.2... ⣝ Downloading Trunk 1.17.2... ⣽ Downloading Trunk 1.17.2... ⣞ Downloading Trunk 1.17.2... ⣡ Downloading Trunk 1.17.2... ⣯ Downloading Trunk 1.17.2... ⣠Downloading Trunk 1.17.2... ⥿ Downloading Trunk 1.17.2... ⢿ Downloading Trunk 1.17.2... ⣝ Downloading Trunk 1.17.2... ⣽ Downloading Trunk 1.17.2... ⣞ Downloading Trunk 1.17.2... ⣡ Downloading Trunk 1.17.2... ⣯ Downloading Trunk 1.17.2... ⣠Downloading Trunk 1.17.2... ⥿ Downloading Trunk 1.17.2... ⢿ Downloading Trunk 1.17.2... ⣝ Downloading Trunk 1.17.2... ⣽ Downloading Trunk 1.17.2... ⣞ Downloading Trunk 1.17.2... ⣡ Downloading Trunk 1.17.2... ⣯ Downloading Trunk 1.17.2... ⣠Downloading Trunk 1.17.2... ⥿ Downloading Trunk 1.17.2... ⢿ Downloading Trunk 1.17.2... ⣝ Downloading Trunk 1.17.2... ⣽ Downloading Trunk 1.17.2... ⣞ Downloading Trunk 1.17.2... ⣡ Downloading Trunk 1.17.2... ⣯ Downloading Trunk 1.17.2... â Downloading Trunk 1.17.2... done ⥿ Verifying Trunk sha256... â Verifying Trunk sha256... done ⥿ Unpacking Trunk... â Unpacking Trunk... done â 13 linters were enabled (.trunk/trunk.yaml) actionlint 1.6.26 (2 github-workflow files) bandit 1.7.5 (2 python files) black 23.9.1 (2 python files) checkov 3.1.9 (5 yaml files) git-diff-check (12 files) isort 5.12.0 (2 python files) (created .isort.cfg) markdownlint 0.37.0 (1 markdown file) (created .markdownlint.yaml) osv-scanner 1.4.3 (1 lockfile file) prettier 3.1.0 (1 markdown, 5 yaml files) ruff 0.1.6 (2 python files) (created ruff.toml) trivy 0.47.0 (5 yaml files) trufflehog 3.63.2-rc0 (12 files) yamllint 1.33.0 (5 yaml files) (created .yamllint.yaml) Next Steps 1. Read documentation Our documentation can be found at https://docs.trunk.io 2. Get help and give feedback Join the Trunk community at https://slack.trunk.io
trunk fmt src/main.py || exit 0
3/4 ââ Formatted src/main.py Re-checking autofixed files... â Formatted src/main.py Re-checking autofixed files... Checked 1 file â No issues
trunk check --fix --filter=-ruff --print-failures src/main.py
4/4 âChecked 1 file â No issues
Updated Code:
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)
trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
# Step 2: Define the PyTorch Model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)
# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()
# Training loop
epochs = 3
for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
torch.save(model.state_dict(), "mnist_model.pth")
Diff:
---
+++
@@ -1,19 +1,19 @@
-from PIL import Image
+import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
+from PIL import Image
+from torch.utils.data import DataLoader
from torchvision import datasets, transforms
-from torch.utils.data import DataLoader
-import numpy as np
# Step 1: Load MNIST Data and Preprocess
-transform = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.5,), (0.5,))
-])
+transform = transforms.Compose(
+ [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
+)
-trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
+trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
+
# Step 2: Define the PyTorch Model
class Net(nn.Module):
@@ -22,13 +22,14 @@
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
-
+
def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)
+
# Step 3: Train the Model
model = Net()
rope
library to refactor Python! Check out Large Language Models are Bad at Refactoring Code. To have Sweep refactor your code, try sweep: Refactor <your_file>.py
!đĄ To recreate the pull request edit the issue title or description. To tweak the pull request, leave a comment on the pull request. Join Our Discord
Details
No response