Vehicle Lateral Parameter Plotter
Data: param.mat/param_feasible
eq = tan(pi/(2*C))-k*C == 0
solve(eq,C)
for k = 1.9 ~ 3.0(?)
then, D = C_alpha*alpha_max/k, B = k/(alpha_max*C)
Brief: convert linear tire model to Pacejka Magic formula
Fy = C_{alpha}*alpha
into
Fy = D*sin(C*atan(B*alpha))
using
C_{alpha} = D*C*B and C*atan(B*alpha_{max}) = pi/2
and C_{alpha}*alpha_{max} = k*D
Thus, plot depending on k = 1.6~2.0
related pull request: https://github.com/swl017/mpcc_ros/pull/4
1. 스펙으로 모델 도출
IAC 모델 스펙: google 문서
횡방향 Pacejka 모델
Fy vs slip
종방향 모델
Fx vs D(throttle)
vx vs t(simulate assuming full throttle)
matlab code: swl017/MATLAB.git
2. 튜닝
scaled -> fullscale의 변화만큼 cost 튜닝 Liniger MPCC fullscale branch: https://github.com/alexliniger/MPCC/blob/fullsize/C%2B%2B/Params/cost.json
n_sqp
2 -> 100("잘생각해봐") src/mpcc_controller/mpcc_controller/Params/config.json3. 결과
느리지만 안정적 mpcc_model_by_spce_nsqp_100.mp4 (30 MB)
4. TODO
n_sqp
< 10 에서도 잘 동작하게 튜닝