Resource isolation is a fundamental requirement in datacenter environments. However, our production experience in Meta’s large-scale datacenters shows that existing IO control mechanisms for block storage are inadequate in containerized environments. IO control needs to provide proportional resources to containers while taking into account the hardware heterogeneity of storage devices and the idiosyncrasies of the workloads deployed in datacenters. The speed of modern SSDs requires IO control to execute with low-overheads. Furthermore, IO control should strive for work conservation, take into account the interactions with the memory management subsystem, and avoid priority inversions that lead to isolation failures. To address these challenges, this paper presents IOCost, an IO control solution that is designed for containerized environments and provides scalable, work-conserving, and low-overhead IO control for heterogeneous storage devices and diverse workloads in datacenters. IOCost performs offline profiling to build a device model and uses it to estimate device occupancy of each IO request. To minimize runtime overhead, it separates IO control into a fast per-IO issue path and a slower periodic planning path. A novel work-conserving budget donation algorithm enables containers to dynamically share unused budget. We have deployed IOCost across the entirety of Meta’s datacenters comprised of millions of ma- chines, upstreamed IOCost to the Linux kernel, and open-sourced our device-profiling tools. IOCost has been running in production for two years, providing IO control for Meta’s fleet. We describe the design of IOCost and share our experience deploying it at scale.
어떤 내용의 논문인가요? 👋
컨테이너화된 환경을 위해 설계된 IO 제어 솔루션에 관한 연구
Abstract (요약) 🕵🏻♂️
Resource isolation is a fundamental requirement in datacenter environments. However, our production experience in Meta’s large-scale datacenters shows that existing IO control mechanisms for block storage are inadequate in containerized environments. IO control needs to provide proportional resources to containers while taking into account the hardware heterogeneity of storage devices and the idiosyncrasies of the workloads deployed in datacenters. The speed of modern SSDs requires IO control to execute with low-overheads. Furthermore, IO control should strive for work conservation, take into account the interactions with the memory management subsystem, and avoid priority inversions that lead to isolation failures. To address these challenges, this paper presents IOCost, an IO control solution that is designed for containerized environments and provides scalable, work-conserving, and low-overhead IO control for heterogeneous storage devices and diverse workloads in datacenters. IOCost performs offline profiling to build a device model and uses it to estimate device occupancy of each IO request. To minimize runtime overhead, it separates IO control into a fast per-IO issue path and a slower periodic planning path. A novel work-conserving budget donation algorithm enables containers to dynamically share unused budget. We have deployed IOCost across the entirety of Meta’s datacenters comprised of millions of ma- chines, upstreamed IOCost to the Linux kernel, and open-sourced our device-profiling tools. IOCost has been running in production for two years, providing IO control for Meta’s fleet. We describe the design of IOCost and share our experience deploying it at scale.
이 논문을 읽어서 무엇을 배울 수 있는지 알려주세요! 🤔
이 논문을 제대로 읽었을 때 어떤 지식을 얻을 수 있을까요?
같이 읽어보면 좋을 만한 글이나 이슈가 있을까요?
만약에 있다면 자유롭게 작성해 주세요!
레퍼런스의 URL을 알려주세요! 🔗