Open caffelearn opened 5 years ago
does your model output a list?
@caffelearn @szagoruyko I also encountered this problem, did you solve itοΌ
does your model output a list?
i also meet this problem and yes, my model output a list
could you help me? @szagoruyko
class Backbone(Module):
def __init__(self, num_layers, drop_ratio, mode='ir'):
super(Backbone, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1 ,bias=False),
BatchNorm2d(64),
PReLU(64))
self.output_layer = Sequential(BatchNorm2d(512),
Dropout(drop_ratio),
Flatten(),
Linear(512 * 7 * 7, 512),
BatchNorm1d(512))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
# for MTL
self.tower = nn.Sequential(
nn.Dropout(),
nn.Linear(512, 32),
nn.ReLU(),
nn.Linear(32, 2),
)
self.towers = nn.ModuleList([self.tower for _ in range(40)])
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self,x):
x = self.input_layer(x)
x = self.body(x)
h_shared = self.output_layer(x)
# for MTL
out = [tower(h_shared) for tower in self.towers]
return out
how do you solve this? @caffelearn @H-YunHui
@Light-- I was able to resolve this by passing a tuple containing the output list's elements.
For example if your model has 3 outputs which you output as elements of a list called 'y', then the make_dot function would look like this:
vis_graph = make_dot((y[0], y[1], y[2]), params=dict(list(self.model.named_parameters()) ))
@chesharma
vis_graph = make_dot((y[0], y[1], y[2]), params=dict(list(self.model.named_parameters()) ))
Genius bro! π π π How did you notice this problem and figure it out ?
# the output of my model is a list, and its length is 40, i used this and it worked out!
vis_graph = make_dot(tuple((y[i] for i in range(40))),)
thanks @chesharma
File "C:\Users\admin\AppData\Local\conda\conda\envs\pytorch\lib\site-packages\torchviz\dot.py", line 38, in make_dot output_nodes = (var.grad_fn,) if not isinstance(var, tuple) else tuple(v.grad_fn for v in var)
AttributeError: 'list' object has no attribute 'grad_fn'
use: x= torch.randn(1, 3, 800, 800) y = self.model.cpu()(x) vis_graph = make_dot(y, params=dict(list(self.model.named_parameters()) ))