Open tymsoncyferki opened 7 months ago
Hi, if anybody was wondering how to run the model on cpu (for smaller datasets such as Bisque Breast Cancer cpu is sufficient), those are the changes I have made:
In train.py:
train.py
parser.add_argument('--gpus', default = [])
trainer = Trainer( num_sanity_val_steps=0, logger=cfg.load_loggers, callbacks=cfg.callbacks, max_epochs=cfg.General.epochs, amp_level=cfg.General.amp_level, accumulate_grad_batches=cfg.General.grad_acc, deterministic=True, check_val_every_n_epoch=1, )
In TransMIL.py:
TransMIL.py
.cuda()
# cls_tokens = self.cls_token.expand(B, -1, -1).cuda() cls_tokens = self.cls_token.expand(B, -1, -1)
In terminal run training without gpus argument:
python train.py --stage='train' --config='Bisque/TransMIL.yaml' --fold=0
Hi, if anybody was wondering how to run the model on cpu (for smaller datasets such as Bisque Breast Cancer cpu is sufficient), those are the changes I have made:
In
train.py
:In
TransMIL.py
:.cuda()
e.g.:In terminal run training without gpus argument: