t46 / fukuro-researcher

Apache License 2.0
0 stars 0 forks source link

labels の encoding が適切にできない問題を解消する #22

Open t46 opened 1 week ago

t46 commented 1 week ago
def generate_tokenize_dataset_func(dataset_sample):

    prompt = f"""
    You are a helpful assistant.

    The dataset is huggingface datasets.Dataset. 
    The first element of the dataset is like this:
    {dataset_sample}

    Model and tokenizer is prepared as:
    model = AutoModelForCausalLM.from_pretrained(model_id)
    tokenizer = AutoTokenizer.from_pretrained(
        model_id,
        padding_side="left",
        model_max_length=512
    )
    You will pass this dataset to this model after tokenizing using the tokenizer.

    Current code:

            train_dataset = tokenize_dataset(training_datasets, self.tokenizer, self.tokenizer.model_max_length)

            epochs = 1

            # Create data loader
            train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, collate_fn=collate_fn)

            # Set up optimizer and scheduler
            optimizer_name = "AdamW"
            optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=5e-3, weight_decay=0.01)  # NOTE: lr を 5e-3 に変更
            total_steps = len(train_loader) * epochs
            scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)

            loss_fn = torch.nn.CrossEntropyLoss()

            # Training loop
            for epoch in range(epochs):
                model.train()
                total_loss = 0

                for batch in tqdm(train_loader, desc=f"Epoch {{epoch + 1}}/{{epochs}}"):
                    input_ids = batch['input_ids'].to(device)
                    attention_mask = batch['attention_mask'].to(device)
                    labels = batch['labels'].to(device)

                    outputs = model(input_ids, attention_mask=attention_mask, labels=labels)

    Generate a `tokenize_dataset` function that make the above code work, following the style of the code below:

    def tokenize_dataset(dataset: datasets.Dataset, tokenizer, tokenizer_max_length: int) -> datasets.Dataset:
        def tokenize_function(examples):
            ... = examples["..."]
            encodings = tokenizer(..., truncation=True, padding="max_length", max_length=tokenizer_max_length)
            ...
            encodings['labels'] = ...
            return encodings

        return dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
    """

    response = run_llm(
        model_name="gemma2:9b",
        message=prompt
    )
    # print(response)

    tokenize_dataset_function_str = extract_tokenize_dataset_function(response)
t46 commented 1 week ago

prompt2model の場合 https://github.com/neulab/prompt2model/blob/main/prompt2model/model_trainer/generate.py

"""A trainer class to train generation models."""

from __future__ import annotations  # noqa FI58

import os
from itertools import takewhile
from typing import Any

import datasets
import torch
import torch.nn as nn
import transformers
from datasets import concatenate_datasets
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments

from prompt2model.model_trainer.base import BaseTrainer
from prompt2model.model_trainer.callback import ValidationCallback
from prompt2model.utils import get_formatted_logger, seed_generator

logger = get_formatted_logger("ModelTrainer")

os.environ["TOKENIZERS_PARALLELISM"] = "false"

class GenerationModelTrainer(BaseTrainer):
    """Trainer for T5 type (encoder-decoder) model and GPT type (deocder-only) model."""

    def __init__(
        self,
        pretrained_model_name: str,
        has_encoder: bool,
        executor_batch_size: int = 10,
        tokenizer_max_length: int = 512,
        sequence_max_length: int = 1024,
        trust_remote_code: bool = False,
    ):
        """Initializes a new instance of GenerationModelTrainer.

        Args:
            pretrained_model_name: HuggingFace pre-trained model name.
                Only supported encoder-decoder model or atuoregressive model.
            has_encoder: Whether the model has an encoder.
                If True, it's a T5-type model (encoder-decoder transformer).
                If fasle, it's a GPT-type model (atuoregressive transformer).
            executor_batch_size: The batch size for model executor to
                make predictions.
            tokenizer_max_length: The maximum sentence length the tokenizer
                is allowed to generate.
            sequence_max_length: The maximum number of tokens the model is
                allowed to generate when being evaluated on validation dataset.
                Note that sequence_max_length might be scaled in the ModelExecutor
                if it exceeds the model's max_embedding.
            trust_remote_code: This parameter controls whether the library should
                trust remote code during model initialization or not.
        """
        self.has_encoder = has_encoder
        self.tokenizer_max_length = tokenizer_max_length
        self.sequence_max_length = sequence_max_length
        self.executor_batch_size = executor_batch_size
        if self.tokenizer_max_length is None:
            logger.warning(
                (
                    "Set the tokenizer_max_length is preferable for finetuning model,"
                    " which saves the cost of training."
                )
            )
        if self.has_encoder:
            self.model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
                pretrained_model_name, trust_remote_code=trust_remote_code
            )
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                pretrained_model_name, trust_remote_code=trust_remote_code
            )
        else:
            self.model = transformers.AutoModelForCausalLM.from_pretrained(
                pretrained_model_name, trust_remote_code=trust_remote_code
            )
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                pretrained_model_name,
                padding_side="left",
                trust_remote_code=trust_remote_code,
            )

        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        if self.model.config.pad_token_id is None:
            self.model.config.pad_token_id = self.tokenizer.eos_token_id

        # self.validation_callback is used for evaluate the model on
        # the validation dataset after each epoch.
        self.validation_callback: ValidationCallback | None = None
        self.training_seed = seed_generator.get_seed()

    def get_left_padding_length(cls, input_list, padding_token_id):
        """Get the left prefix length of the input list.

        Args:
            input_list: A list with the format of [prefix, ..., prefix, Others].
                The GPT tokenizer uses left padding.
            padding_token_id: The prefix of the input list.

        Returns:
            The length of [prefix, ..., prefix] in [prefix, ..., prefix, Others]
        """
        return len(list(takewhile(lambda x: x == padding_token_id, input_list)))

    def get_right_padding_length(cls, input_ids, padding_token_id):
        """Get the left prefix length of the input list.

        Args:
            input_list: A list with the format of [Others, suffix, ..., suffix].
                The T5 tokenizer uses right padding.
            padding_token_id: The suffix of the input list.

        Returns:
            The length of [suffix, ..., suffix] in [Others, suffix, ..., suffix].
        """
        # Reverse the input_ids to get the length of right padding.
        suffix_length = cls.get_left_padding_length(input_ids[::-1], padding_token_id)
        return suffix_length

    def tokenize_dataset(
        self, dataset: datasets.Dataset, shuffle: bool = True
    ) -> datasets.Dataset:
        """Tokenize the training/validation dataset.

        Args:
            dataset: Dataset.dataset with model_input and model_output columns.
            shuffle: Whether to shuffle the dataset.

        Returns:
            A `datasets.Dataset` object containing the preprocessed data with:
                "input_ids": numerical representations of input sequences to the model.
                "attention_mask": Mask to avoid performing attention on padding token
                    indices. Mask values selected in [0, 1]: 1 for tokens that are not
                    masked, 0 for masked tokens.
                "labels": Labels for language modeling. Indices are selected in
                    [-100, 0, ..., config.vocab_size - 1]. All labels set to -100 are
                    ignored (masked), the loss is only computed for labels in
                    [0, ..., config.vocab_size - 1].

                Note that -100 is the default ignore index for labels when computing
                    loss. You can check it by:
                    from torch import nn
                    loss_function = nn.CrossEntropyLoss()
                    IGNORE_INDEX = loss_function.ignore_index
        """
        if shuffle:
            dataset = dataset.shuffle(seed=seed_generator.get_seed())
        inputs = dataset["model_input"]
        outputs = dataset["model_output"]
        longest_input = max(inputs, key=len)
        longest_output = max(outputs, key=len)
        if self.tokenizer_max_length is not None and (
            len(self.tokenizer.tokenize(longest_input)) > self.tokenizer_max_length
            or len(self.tokenizer.tokenize(longest_output)) > self.tokenizer_max_length
        ):
            logger.warning(
                (
                    "Truncation happened when tokenizing dataset."
                    " Consider increasing the tokenizer_max_length if possible."
                    " Otherwise, truncation may lead to unexpected results."
                )
            )
        input_encodings = self.tokenizer.batch_encode_plus(
            inputs,
            truncation=True,
            max_length=self.tokenizer_max_length,
            padding=True,
        )
        output_encodings = self.tokenizer.batch_encode_plus(
            outputs,
            truncation=True,
            max_length=self.tokenizer_max_length,
            padding=True,
        )

        labels = []
        loss_function = nn.CrossEntropyLoss()
        IGNORE_INDEX = loss_function.ignore_index
        if not self.has_encoder:
            length_of_input_encoding_ids_with_padding = len(
                input_encodings["input_ids"][0]
            )
            length_of_output_encoding_ids_with_padding = len(
                output_encodings["input_ids"][0]
            )
            for idx, input_id in enumerate(input_encodings["input_ids"]):
                output_encoding_id = output_encodings["input_ids"][idx]
                length_of_padding_in_output_encoding_id = self.get_left_padding_length(
                    output_encoding_id, self.model.config.pad_token_id
                )
                # The IGNORE_INDEX is ignored for loss compute in Autoregressive model.
                # Reference: https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2DoubleHeadsModel.forward.labels # noqa E501
                length_of_output_encoding_id_without_padding = (
                    length_of_output_encoding_ids_with_padding
                    - length_of_padding_in_output_encoding_id
                )
                if length_of_output_encoding_id_without_padding == 0:
                    logger.warning("One of the model_output is empty.")
                label = [IGNORE_INDEX] * (
                    length_of_input_encoding_ids_with_padding
                    - length_of_output_encoding_id_without_padding
                ) + input_id[-length_of_output_encoding_id_without_padding:]
                if not (
                    len(label)
                    == length_of_input_encoding_ids_with_padding
                    == len(input_id)
                ):
                    raise ValueError(
                        "The label and input_id are not aligned correctly."
                    )
                labels.append(label)
        else:
            # For T5 model, right padding token id should ignored by the loss
            # function. In PyTorch and Tensorflow, this can be done by replacing
            # them with IGNORE_INDEX, which is the ignore_index of the
            # CrossEntropyLoss as demonstrated before.
            # Reference: https://huggingface.co/docs/transformers/v4.30.0/en/model_doc/t5#training # noqa E501
            for output_encoding_id in output_encodings["input_ids"]:
                length_of_right_padding_in_output_encoding_id = (
                    self.get_right_padding_length(
                        output_encoding_id, self.tokenizer.pad_token_id
                    )
                )
                label = (
                    (
                        output_encoding_id[
                            :-length_of_right_padding_in_output_encoding_id
                        ]
                        + [IGNORE_INDEX] * length_of_right_padding_in_output_encoding_id
                    )
                    if length_of_right_padding_in_output_encoding_id != 0
                    else output_encoding_id
                )
                if len(label) != len(output_encoding_id):
                    raise ValueError(
                        "The label and output_encoding_id are not aligned correctly."
                    )
                labels.append(label)

        preprocessed_dict = {
            "input_ids": input_encodings["input_ids"],
            "attention_mask": input_encodings["attention_mask"],
            "labels": labels,
        }
        return datasets.Dataset.from_dict(preprocessed_dict)

    def train_model(
        self,
        hyperparameter_choices: dict[str, Any],
        training_datasets: list[datasets.Dataset],
        validation_datasets: list[datasets.Dataset] | None = None,
    ) -> tuple[transformers.PreTrainedModel, transformers.PreTrainedTokenizer]:
        """Train a text generation model.

        Args:
            hyperparameter_choices: A dictionary of hyperparameters for training.
            training_datasets: Training datasets with `input_col` and `model_output`.
            validation_datasets: Validation datasets during training. If not provided,
                15% of training data will be spilt from training_datasets to validate.

        Returns:
            A trained HuggingFace model and tokenizer.
        """
        hyperparameter_choices_keys = set(hyperparameter_choices.keys())
        supported_keys = {
            "output_dir",
            "logging_steps",
            "evaluation_strategy",
            "save_strategy",
            "num_train_epochs",
            "per_device_train_batch_size",
            "warmup_steps",
            "weight_decay",
            "logging_dir",
            "learning_rate",
            "test_size",
        }
        if not hyperparameter_choices_keys.issubset(supported_keys):
            raise ValueError(f"Only support {supported_keys} as training parameters.")
        training_args = Seq2SeqTrainingArguments(
            output_dir=hyperparameter_choices.get("output_dir", "./result"),
            logging_steps=hyperparameter_choices.get("logging_steps", 1),
            save_strategy=hyperparameter_choices.get("save_strategy", "no"),
            num_train_epochs=hyperparameter_choices.get("num_train_epochs", 10),
            per_device_train_batch_size=hyperparameter_choices.get(
                "per_device_train_batch_size", 100
            ),
            warmup_steps=hyperparameter_choices.get("warmup_steps", 0),
            weight_decay=hyperparameter_choices.get("weight_decay", 0.01),
            logging_dir=hyperparameter_choices.get("logging_dir", "./result"),
            learning_rate=hyperparameter_choices.get("learning_rate", 1e-4),
            predict_with_generate=True,
        )
        evaluation_strategy = hyperparameter_choices.get("evaluation_strategy", "epoch")
        if evaluation_strategy == "epoch":
            evaluate_after_epoch = True
        elif evaluation_strategy == "no":
            logger.info(
                "The trainer doesn't set the evaluation strategy, the evaluation will be skipped."  # noqa E501
            )
            evaluate_after_epoch = False
        else:
            logger.warning(
                (
                    "Only `epoch` evaluation strategy is supported"
                    + ", the evaluation strategy will be set to evaluate_after_epoch."
                )
            )
            evaluate_after_epoch = True

        concatenated_training_dataset = concatenate_datasets(training_datasets)

        if evaluate_after_epoch is True:
            if validation_datasets is None:
                if not self.has_encoder:
                    # The validation dataset for autoregressive model is missing.
                    logger.warning(
                        (
                            (
                                "The validation split for autoregressive model is missing"  # noqa E501
                                + ", which should not contain labels as the training spilt."  # noqa E501
                                + " Thus this evaluation will be skipped."
                            )
                        )
                    )
                    train_dataset = self.tokenize_dataset(concatenated_training_dataset)
                    val_dataset = None
                    evaluate_after_epoch = False
                else:
                    # The validation dataset for encoder-decoder model is missing.
                    logger.warning(
                        (
                            "The validation split for encoder-decoder model is missing."  # noqa E501
                            + " The training dataset will be split to create the validation dataset."  # noqa E501
                        )
                    )
                    test_size = hyperparameter_choices.get("test_size", 0.15)
                    if len(concatenated_training_dataset) <= 1:
                        raise ValueError(
                            "Dataset should be larger than 1 to make train/test split."
                        )
                    splitted_dataset = concatenated_training_dataset.train_test_split(
                        test_size=test_size, seed=self.training_seed
                    )
                    train_dataset = self.tokenize_dataset(splitted_dataset["train"])
                    # The training dataset will be tokenized to train the model.
                    # We evaluate the model on the validation dataset in the
                    # callback with the model executor and model evaluator,
                    # so the validation dataset should not be pre-tokenized here.
                    val_dataset = splitted_dataset["test"]
            else:
                # the training dataset will be tokenized to train the model.
                # But we evaluate the model on the validation dataset in the
                # call back with the model executor and model evaluator,
                # the validation dataset should not be tokenized.
                train_dataset = self.tokenize_dataset(concatenated_training_dataset)
                val_dataset = concatenate_datasets(validation_datasets)
        else:
            if validation_datasets:
                logger.warning(
                    "The validation dataset is provided, but the evaluation is skipped."  # noqa E501
                )
            train_dataset = self.tokenize_dataset(concatenated_training_dataset)
        trainer = Seq2SeqTrainer(
            model=self.model,
            args=training_args,
            train_dataset=train_dataset,
            data_collator=transformers.DataCollatorForSeq2Seq(tokenizer=self.tokenizer)
            if self.has_encoder
            else transformers.DataCollatorForLanguageModeling(
                tokenizer=self.tokenizer, mlm=False
            ),
            optimizers=[
                torch.optim.AdamW(
                    params=self.model.parameters(), lr=training_args.learning_rate
                ),
                None,
            ],
        )

        if evaluate_after_epoch:
            if val_dataset is None:
                raise ValueError(
                    "Validation dataset is None when evaluate_after_epoch is True."
                )
            self.validation_callback = ValidationCallback(
                trainer,
                self.tokenizer,
                val_dataset,
                executor_batch_size=self.executor_batch_size,
                tokenizer_max_length=self.tokenizer_max_length,
                sequence_max_length=self.sequence_max_length,
            )
            trainer.add_callback(self.validation_callback)

        # Train the model
        trainer.train()
        # Return the trained model and tokenizer
        return self.model, self.tokenizer