Open taicun-lin opened 5 months ago
2022-current
experience
iEi
Principal AI Application Engineer
job description
Intel CPU/iGPU/dGPU/NPU
performance, OpenVINO
benchmark, OpenVINO Open Model Zoo
benchmark on iEi TANK-XM811
. (*Intel-MTL-AIPC, ARC-dGPU)
Just like validate Qualcomm CPU/GPU/DSP
performance, SNPE
benchmark, AIMET Model Zoo
on advantech ROM-2860
. Qualcomm-QCM6490
, Hailo, Rock-Chip, Axelera, DeepX. For compare their performance benchmark. Below have our QCM6490 test.adb root
adb shell
export XDG_RUNTIME_DIR=/run/user/root
gst-launch-1.0 qtivcomposer name=mixer sink_1::dimensions="<1920,1080>" ! queue ! waylandsink sync=false fullscreen=true \
qtiqmmfsrc name=camsrc ! video/x-raw\(memory:GBM\),format=NV12,width=1920,height=1080,framerate=30/1 ! queue ! tee name=split ! queue ! mixer. \
split. ! queue ! qtimlvconverter ! queue ! \
qtimltflite delegate=hexagon model=/data/TFLite/posenet_mobilenet_v1_075_481_641_quant.tflite ! queue ! \
qtimlvpose threshold=51.0 results=2 module=posenet labels=/data/TFLite/posenet.labels ! video/x-raw, format=BGRA,width=640,height=360 ! queue ! mixer.
export XDG_RUNTIME_DIR=/run/user/root
gst-launch-1.0 -e qtivcomposer name=mixer sink_1::dimensions="<1920,1080>" sink_1::alpha=0.5 ! queue ! waylandsink sync=false fullscreen=true \
qtiqmmfsrc name=camsrc ! video/x-raw\(memory:GBM\),format=NV12,width=1920,height=1080,framerate=30/1 ! queue ! tee name=split ! queue ! mixer. \
split. ! queue ! qtimlvconverter ! queue ! qtimltflite delegate=nnapi-dsp model=/data/TFLite/dv3_argmax_int32.tflite ! queue ! \
qtimlvsegmentation module=deeplab-argmax labels=/data/TFLite/dv3-argmax.labels ! video/x-raw,width=256,height=144 ! queue ! mixer.
export XDG_RUNTIME_DIR=/run/user/root
gst-launch-1.0 -e --gst-debug=2 qtivcomposer name=mixer sink_1::position="<50, 50>" sink_1::dimensions="<368, 64>" ! queue ! waylandsink sync=false fullscreen=true \
qtiqmmfsrc name=camsrc ! video/x-raw\(memory:GBM\),format=NV12,width=1920,height=1080,framerate=30/1 ! queue ! tee name=split ! queue ! mixer. \
split. ! queue ! qtimlvconverter ! queue ! qtimltflite delegate=hexagon model=/data/TFLite/mobilenet_v2_1.0_224_quant.tflite ! queue ! \
qtimlvclassification threshold=60.0 results=3 module=mobilenet labels=/data/TFLite/mobilenet.labels ! video/x-raw,format=BGRA,width=368,height=64 ! queue ! mixer.
export SNPE_TARGET_STL=libgnustl_shared.so
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/snpeexample/lib:/lib/aarch64-linux-gnu:/usr/lib/
export PATH=$PATH:/data/local/tmp/snpeexample/bin
export ADSP_LIBRARY_PATH="/data/local/tmp/snpeexample/dsp;/usr/lib/rfsa/adsp;/dsp"
export XDG_RUNTIME_DIR=/run/user/root
gst-launch-1.0 qtivcomposer name=mixer sink_1::dimensions="<1920,1080>" ! queue ! waylandsink sync=false fullscreen=true \
qtiqmmfsrc name=camsrc ! video/x-raw,format=NV12,width=1920,height=1080,framerate=30/1 ! tee name=t ! queue ! mixer. t. ! queue ! \
qtimlvconverter mean="<0.0, 0.0, 0.0>" sigma="<0.003921, 0.003921, 0.003921>" ! queue ! \
qtimlsnpe delegate=dsp model=/data/SNPE2/yolov5n320_v213_quantized.dlc layers="< Conv_266, Conv_232, Conv_198 >" ! queue ! \
qtimlvdetection threshold=51.0 results=10 module= yolov5s labels=/data/SNPE/yolov5m.labels ! \
video/x-raw,width=480,height=270 ! queue ! mixer.
technical marketing
reference link
2021-2022
experience
blueskies.ai
Service Manager
jon description
Technical support
2015-2021
experience
intel
AIOT Software Engineer
no confidential
public link
edge sw hub: https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/edge-solutions/overview.htmlcase study1(retail carrefour):
target: end-customer demo
link: https://m.eprice.com.tw/tech/talk/1141/5027227/1 link: https://advantechfiles.blob.core.windows.net/cms/30cfab70-fa42-4be6-9705-0ca7d14e652c/Case%20Study%20%20PDF%20File/Advantech-iRetail-Customer-Story_Carrefour-Taiwan_20170914_Eng.pdf link: https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/real-time-sensor-fusion-for-loss-detection.html link: https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/automated-checkout.html link: https://cdrdv2-public.intel.com/671083/intel-vision-accelerator-design-products-intel-advantech-solution-brief.pdf
- Solution Provider(Intel/Advantech)
- End Customer(Carrefour)
- Intel build a base on AI solution of self-auto-checkout to advantech. advantech base on Intel cpu to design IPC, base on Intel vpu to design accelerate card. Intel base on OpenVINO to create demo real-time-sensor-fusion-for-loss-detection and automated-checkout Integrate as below
- Sensor: weight-scale,cameras,RFIDs get object information from weight-scale,camera,RFID
- HW: advatech gateway IPC/VPU AI inference on gateway. Collect data on controller.
- SW:Intel-OpenVINO-Solution/Advantech-System/Carrefour-IT-System/Cloud(or Server)/checkout-APP Base on Intel OpenVINO Solution for AI detection result. Advantech provide lib/api/sdk for get controller result. Carrefour provide api for get object pricing and save checkout order to Carrefour IT system/server/cloud. End user can be on touch screen to see the checkout application and auto checkout it by themself.**
case study2(smart meter reader):
target: internal demo
link: https://docs.openvino.ai/2024/notebooks/203-meter-reader-with-output.html link: https://github.com/IEI-dev/Smart-Meter-Reader Customize from openvino notebooks 203-meter-reader. traditional meter analog value to digital value Integrate 3-party toolkit to be a demo.
- AI: This example have 3 step, step1 for find meter, step2/3 for find scale value We change step3 opencv-scale function to object-detection function
old:1. Meter-Detection 2.Meter-Segmentation3.Rectangle-Mapping
new:1. Meter-Detection 2.Meter-Segmentation3.Scale-Detection
- SW: Use ready toolkit Grafana/Node-Red/influxDB as UI
312683051-343baf9c-b34a-4616-a09b-7010af1593ad.webm
case study3(danger-zone):
target: partner demo
link: https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/work-zone-analytics.html link: https://dlstreamer.github.io/ This demo will show onembedded-world-2024
iEi booth. If you will join this event, you can see our demo. Customize from Intel OpenVINO example work-zone-analytics This demo for prove AI can be work on Intel dGPU. Intel announce ARC dGPU in 2023. We are Intel partner, we need to use it to demo and promote it. So next year should be focus on npu for AIPC.In software, we use dlstreamer to replace python/openvino/opencv. dlstreamer is gstreamer with openvino element. For prove we can no-code for easy show the demo. *Personally I prefer use python/openvino/opencv,no-code means you can't customize it.
- HW: CPU/iGPU/VPU -> dGPU
- SW: python/openvino/opencv -> dlstreamer
technical support
technical marketing
ComputeX2016
: smart greenhouse(none AI, it's IOT4.0)link: https://news.xfastest.com/computex-2016/21910/computex-2016-intel/
-real-time greenhouse monitor -The farmer will give you a daily SOP for take plant. Use this SOP to create auto irrigation planting system. Get sensor rawdata from arduino to wifi-module to gateway to server. The system will adjust send mqtt message to the edge device, according to SOP or other requirement. -In addition to the basic SOP, there are also have weather abnormalities
if soil sensor detect pH is too low, will open two pump, one for water, one for fertilizer.
Control these two pump speed for adjust fertilizer concentration.
if today is cloudy day, will open light.
- Sensor:
(input)temperature,humidity,soil,luminescence,camera
(output)motor,pump,light,fan- HW:
arduino101/edison, wifi-module(wise), gateway, end-customer's server- SW:
advantech PLC lib, Natural Stance IT system,web base demo by C#,asp.net- Cloud:
windriver helix device cloud
ComputeX2019
: label OCR detector in factorySmart camera will do lightweight label detection for filter data in first. And then send picture to gateway for OCR detection, and then save result to server. This demo can be reduce network and server loading.
- HW: Smart camera(2in1,camera+minipc+m.2vpu), gateway, server
- SW: python/opencv/openvino
Edge AI Optimization challenge
Demo for ODM partner. Prepare several different level computer, and several ai model. Install openvino and benchmark tool for show the performance. Partner can be modify the code, choose CPU/iGPU/VPU and choose model. Hands-on do it and see the performance in this event.
2014-2015
experience
microsoft
technical account manager
technical support
technical management
2013-2014
experience
acer
security engineer
background
Name: Taicun Lin
Education
Summary
AIOT
project or demo event with software full stack development.