talmolab / sleap

A deep learning framework for multi-animal pose tracking.
https://sleap.ai
Other
435 stars 97 forks source link

Constrain attrs (mac) and opencv (linux) in 1.3.4 #1927

Closed roomrys closed 2 months ago

roomrys commented 2 months ago

Description

This PR is a hotfix to add further constraints to attrs (<22.2.0) and opencv (<=4.8.1 # [linux]).


Items


Manual Installation Tests

Linux

GUI Training ![image](https://github.com/user-attachments/assets/359c624e-564d-4a2f-b9a5-f015f0226c71) ![image](https://github.com/user-attachments/assets/6adfa40c-451a-4d55-930e-b7c4530676e7)
Terminal: Training ```bash Resetting monitor window. Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/viz/validation.*.png Start training centroid... ['sleap-train', '/tmp/tmpd1et2_6d/240903_105333_training_job.json', '/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp', '--zmq', '--save_viz'] INFO:sleap.nn.training:Versions: SLEAP: 1.3.4 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Linux-5.15.0-78-generic-x86_64-with-debian-bookworm-sid INFO:sleap.nn.training:Training labels file: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Training profile: /tmp/tmpd1et2_6d/240903_105333_training_job.json INFO:sleap.nn.training: INFO:sleap.nn.training:Arguments: INFO:sleap.nn.training:{ "training_job_path": "/tmp/tmpd1et2_6d/240903_105333_training_job.json", "labels_path": "/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp", "video_paths": [ "" ], "val_labels": null, "test_labels": null, "base_checkpoint": null, "tensorboard": false, "save_viz": true, "zmq": true, "run_name": "", "prefix": "", "suffix": "", "cpu": false, "first_gpu": false, "last_gpu": false, "gpu": "auto" } INFO:sleap.nn.training: INFO:sleap.nn.training:Training job: INFO:sleap.nn.training:{ "data": { "labels": { "training_labels": "/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 99, 13, 36, 84, 5, 29, 16, 11, 53, 88, 9, 66, 82, 79, 78, 77, 91, 50, 35, 37, 75, 26, 69, 31, 62, 8, 97, 32, 67, 59, 85, 2, 83, 87, 1, 12, 42, 21, 65, 68, 48, 90, 95, 25, 49, 4, 63, 89, 98, 73, 86, 60, 94, 24, 47, 93, 80, 0, 17, 51, 30, 23, 38, 71, 18, 39, 44, 81, 10, 20, 57, 6, 15, 64, 61, 22, 56, 54, 46, 27, 72, 14, 55, 41, 70, 45, 74, 76, 92, 34 ], "validation_inds": [ 43, 96, 7, 58, 28, 19, 40, 33, 3, 52 ], "test_inds": null, "search_path_hints": [ "", "", "", "", "", "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 0.5, "pad_to_stride": 16, "resize_and_pad_to_target": true, "target_height": 1024, "target_width": 1024 }, "instance_cropping": { "center_on_part": "thorax", "crop_size": null, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 16, "output_stride": 2, "filters": 16, "filters_rate": 2.0, "middle_block": true, "up_interpolate": true, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": { "anchor_part": "thorax", "sigma": 2.5, "output_stride": 2, "loss_weight": 1.0, "offset_refinement": false }, "centered_instance": null, "multi_instance": null, "multi_class_bottomup": null, "multi_class_topdown": null }, "base_checkpoint": null }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": true, "rotation_min_angle": -180.0, "rotation_max_angle": 180.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 4, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 2, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-08, "plateau_patience": 20 } }, "outputs": { "save_outputs": true, "run_name": "240903_105332.centroid.n=100", "run_name_prefix": "", "run_name_suffix": "", "runs_folder": "/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.3.3", "filename": "/tmp/tmpd1et2_6d/240903_105333_training_job.json" } INFO:sleap.nn.training: 2024-09-03 10:53:34.958393: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:34.962997: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:34.963711: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero INFO:sleap.nn.training:Auto-selected GPU 0 with 23692 MiB of free memory. INFO:sleap.nn.training:Using GPU 0 for acceleration. INFO:sleap.nn.training:Disabled GPU memory pre-allocation. INFO:sleap.nn.training:System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initalized: False Memory growth: True INFO:sleap.nn.training: INFO:sleap.nn.training:Initializing trainer... INFO:sleap.nn.training:Loading training labels from: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Creating training and validation splits from validation fraction: 0.1 INFO:sleap.nn.training: Splits: Training = 90 / Validation = 10. INFO:sleap.nn.training:Setting up for training... INFO:sleap.nn.training:Setting up pipeline builders... INFO:sleap.nn.training:Setting up model... INFO:sleap.nn.training:Building test pipeline... 2024-09-03 10:53:35.790360: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-09-03 10:53:35.791013: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:35.791858: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:35.792617: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:36.063704: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:36.064484: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:36.065168: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:53:36.065830: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21787 MB memory: -> device: 0, name: NVIDIA RTX A5000, pci bus id: 0000:01:00.0, compute capability: 8.6 INFO:sleap.nn.training:Loaded test example. [1.300s] INFO:sleap.nn.training: Input shape: (512, 512, 1) INFO:sleap.nn.training:Created Keras model. INFO:sleap.nn.training: Backbone: UNet(stacks=1, filters=16, filters_rate=2.0, kernel_size=3, stem_kernel_size=7, convs_per_block=2, stem_blocks=0, down_blocks=4, middle_block=True, up_blocks=3, up_interpolate=True, block_contraction=False) INFO:sleap.nn.training: Max stride: 16 INFO:sleap.nn.training: Parameters: 1,953,105 INFO:sleap.nn.training: Heads: INFO:sleap.nn.training: [0] = CentroidConfmapsHead(anchor_part='thorax', sigma=2.5, output_stride=2, loss_weight=1.0) INFO:sleap.nn.training: Outputs: INFO:sleap.nn.training: [0] = KerasTensor(type_spec=TensorSpec(shape=(None, 256, 256, 1), dtype=tf.float32, name=None), name='CentroidConfmapsHead/BiasAdd:0', description="created by layer 'CentroidConfmapsHead'") INFO:sleap.nn.training:Training from scratch INFO:sleap.nn.training:Setting up data pipelines... INFO:sleap.nn.training:Training set: n = 90 INFO:sleap.nn.training:Validation set: n = 10 INFO:sleap.nn.training:Setting up optimization... INFO:sleap.nn.training: Learning rate schedule: LearningRateScheduleConfig(reduce_on_plateau=True, reduction_factor=0.5, plateau_min_delta=1e-06, plateau_patience=5, plateau_cooldown=3, min_learning_rate=1e-08) INFO:sleap.nn.training: Early stopping: EarlyStoppingConfig(stop_training_on_plateau=True, plateau_min_delta=1e-08, plateau_patience=20) INFO:sleap.nn.training:Setting up outputs... INFO:sleap.nn.callbacks:Training controller subscribed to: tcp://127.0.0.1:9000 (topic: ) INFO:sleap.nn.training: ZMQ controller subcribed to: tcp://127.0.0.1:9000 INFO:sleap.nn.callbacks:Progress reporter publishing on: tcp://127.0.0.1:9001 for: not_set INFO:sleap.nn.training: ZMQ progress reporter publish on: tcp://127.0.0.1:9001 INFO:sleap.nn.training:Created run path: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100 INFO:sleap.nn.training:Setting up visualization... INFO:sleap.nn.training:Finished trainer set up. [3.2s] INFO:sleap.nn.training:Creating tf.data.Datasets for training data generation... INFO:sleap.nn.training:Finished creating training datasets. [3.5s] INFO:sleap.nn.training:Starting training loop... Epoch 1/2 2024-09-03 10:53:43.671648: I tensorflow/stream_executor/cuda/cuda_dnn.cc:366] Loaded cuDNN version 8201 WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0073s vs `on_train_batch_end` time: 0.0272s). Check your callbacks. 2024-09-03 10:53:58.686686: I tensorflow/stream_executor/cuda/cuda_blas.cc:1774] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once. 200/200 - 17s - loss: 2.1690e-04 - val_loss: 1.0114e-04 - lr: 1.0000e-04 - 17s/epoch - 84ms/step Epoch 2/2 Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/viz/validation.*.png 200/200 - 9s - loss: 6.7886e-05 - val_loss: 4.3949e-05 - lr: 1.0000e-04 - 9s/epoch - 45ms/step Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/viz/validation.*.png INFO:sleap.nn.training:Finished training loop. [0.4 min] INFO:sleap.nn.training:Deleting visualization directory: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/viz INFO:sleap.nn.training:Saving evaluation metrics to model folder... Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 34.9 FPS INFO:sleap.nn.evals:Saved predictions: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/labels_pr.train.slp INFO:sleap.nn.evals:Saved metrics: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/metrics.train.npz INFO:sleap.nn.evals:OKS mAP: 0.737803 Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 7.3 FPS INFO:sleap.nn.evals:Saved predictions: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/labels_pr.val.slp INFO:sleap.nn.evals:Saved metrics: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/metrics.val.npz INFO:sleap.nn.evals:OKS mAP: 0.633989 INFO:sleap.nn.callbacks:Closing the reporter controller/context. INFO:sleap.nn.callbacks:Closing the training controller socket/context. Run Path: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100 Finished training centroid. Resetting monitor window. Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/viz/validation.*.png Start training centered_instance... ['sleap-train', '/tmp/tmpnk568sb3/240903_105416_training_job.json', '/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp', '--zmq', '--save_viz'] INFO:sleap.nn.training:Versions: SLEAP: 1.3.4 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Linux-5.15.0-78-generic-x86_64-with-debian-bookworm-sid INFO:sleap.nn.training:Training labels file: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Training profile: /tmp/tmpnk568sb3/240903_105416_training_job.json INFO:sleap.nn.training: INFO:sleap.nn.training:Arguments: INFO:sleap.nn.training:{ "training_job_path": "/tmp/tmpnk568sb3/240903_105416_training_job.json", "labels_path": "/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp", "video_paths": [ "" ], "val_labels": null, "test_labels": null, "base_checkpoint": null, "tensorboard": false, "save_viz": true, "zmq": true, "run_name": "", "prefix": "", "suffix": "", "cpu": false, "first_gpu": false, "last_gpu": false, "gpu": "auto" } INFO:sleap.nn.training: INFO:sleap.nn.training:Training job: INFO:sleap.nn.training:{ "data": { "labels": { "training_labels": "/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 66, 96, 58, 4, 65, 61, 85, 28, 31, 35, 90, 60, 16, 27, 55, 13, 9, 80, 87, 6, 75, 70, 95, 56, 34, 82, 69, 76, 89, 18, 39, 77, 51, 33, 24, 32, 81, 7, 53, 20, 36, 67, 54, 12, 10, 19, 30, 86, 44, 71, 0, 73, 40, 83, 2, 14, 38, 74, 94, 68, 98, 17, 49, 57, 84, 78, 72, 26, 93, 92, 5, 3, 47, 1, 88, 37, 45, 99, 46, 63, 62, 23, 8, 42, 50, 48, 91, 64, 79, 43 ], "validation_inds": [ 15, 11, 25, 21, 22, 29, 41, 52, 97, 59 ], "test_inds": null, "search_path_hints": [ "", "", "", "", "", "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 1.0, "pad_to_stride": 1, "resize_and_pad_to_target": true, "target_height": 1024, "target_width": 1024 }, "instance_cropping": { "center_on_part": "thorax", "crop_size": 144, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 16, "output_stride": 4, "filters": 24, "filters_rate": 2.0, "middle_block": true, "up_interpolate": true, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": null, "centered_instance": { "anchor_part": "thorax", "part_names": [ "head", "thorax", "abdomen", "wingL", "wingR", "forelegL4", "forelegR4", "midlegL4", "midlegR4", "hindlegL4", "hindlegR4", "eyeL", "eyeR" ], "sigma": 2.5, "output_stride": 4, "loss_weight": 1.0, "offset_refinement": false }, "multi_instance": null, "multi_class_bottomup": null, "multi_class_topdown": null }, "base_checkpoint": null }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": true, "rotation_min_angle": -180.0, "rotation_max_angle": 180.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 4, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 2, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-08, "plateau_patience": 10 } }, "outputs": { "save_outputs": true, "run_name": "240903_105416.centered_instance.n=100", "run_name_prefix": "", "run_name_suffix": "", "runs_folder": "/home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.3.3", "filename": "/tmp/tmpnk568sb3/240903_105416_training_job.json" } INFO:sleap.nn.training: 2024-09-03 10:54:18.223901: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:18.227782: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:18.228513: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero INFO:sleap.nn.training:Auto-selected GPU 0 with 23719 MiB of free memory. INFO:sleap.nn.training:Using GPU 0 for acceleration. INFO:sleap.nn.training:Disabled GPU memory pre-allocation. INFO:sleap.nn.training:System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initalized: False Memory growth: True INFO:sleap.nn.training: INFO:sleap.nn.training:Initializing trainer... INFO:sleap.nn.training:Loading training labels from: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Creating training and validation splits from validation fraction: 0.1 INFO:sleap.nn.training: Splits: Training = 90 / Validation = 10. INFO:sleap.nn.training:Setting up for training... INFO:sleap.nn.training:Setting up pipeline builders... INFO:sleap.nn.training:Setting up model... INFO:sleap.nn.training:Building test pipeline... 2024-09-03 10:54:19.052567: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-09-03 10:54:19.053454: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:19.054528: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:19.055374: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:19.317241: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:19.317998: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:19.318680: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:54:19.319340: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21814 MB memory: -> device: 0, name: NVIDIA RTX A5000, pci bus id: 0000:01:00.0, compute capability: 8.6 INFO:sleap.nn.training:Loaded test example. [1.644s] INFO:sleap.nn.training: Input shape: (144, 144, 1) INFO:sleap.nn.training:Created Keras model. INFO:sleap.nn.training: Backbone: UNet(stacks=1, filters=24, filters_rate=2.0, kernel_size=3, stem_kernel_size=7, convs_per_block=2, stem_blocks=0, down_blocks=4, middle_block=True, up_blocks=2, up_interpolate=True, block_contraction=False) INFO:sleap.nn.training: Max stride: 16 INFO:sleap.nn.training: Parameters: 4,311,445 INFO:sleap.nn.training: Heads: INFO:sleap.nn.training: [0] = CenteredInstanceConfmapsHead(part_names=['head', 'thorax', 'abdomen', 'wingL', 'wingR', 'forelegL4', 'forelegR4', 'midlegL4', 'midlegR4', 'hindlegL4', 'hindlegR4', 'eyeL', 'eyeR'], anchor_part='thorax', sigma=2.5, output_stride=4, loss_weight=1.0) INFO:sleap.nn.training: Outputs: INFO:sleap.nn.training: [0] = KerasTensor(type_spec=TensorSpec(shape=(None, 36, 36, 13), dtype=tf.float32, name=None), name='CenteredInstanceConfmapsHead/BiasAdd:0', description="created by layer 'CenteredInstanceConfmapsHead'") INFO:sleap.nn.training:Training from scratch INFO:sleap.nn.training:Setting up data pipelines... INFO:sleap.nn.training:Training set: n = 90 INFO:sleap.nn.training:Validation set: n = 10 INFO:sleap.nn.training:Setting up optimization... INFO:sleap.nn.training: Learning rate schedule: LearningRateScheduleConfig(reduce_on_plateau=True, reduction_factor=0.5, plateau_min_delta=1e-06, plateau_patience=5, plateau_cooldown=3, min_learning_rate=1e-08) INFO:sleap.nn.training: Early stopping: EarlyStoppingConfig(stop_training_on_plateau=True, plateau_min_delta=1e-08, plateau_patience=10) INFO:sleap.nn.training:Setting up outputs... INFO:sleap.nn.callbacks:Training controller subscribed to: tcp://127.0.0.1:9000 (topic: ) INFO:sleap.nn.training: ZMQ controller subcribed to: tcp://127.0.0.1:9000 INFO:sleap.nn.callbacks:Progress reporter publishing on: tcp://127.0.0.1:9001 for: not_set INFO:sleap.nn.training: ZMQ progress reporter publish on: tcp://127.0.0.1:9001 INFO:sleap.nn.training:Created run path: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100 INFO:sleap.nn.training:Setting up visualization... INFO:sleap.nn.training:Finished trainer set up. [3.0s] INFO:sleap.nn.training:Creating tf.data.Datasets for training data generation... INFO:sleap.nn.training:Finished creating training datasets. [4.2s] INFO:sleap.nn.training:Starting training loop... Epoch 1/2 2024-09-03 10:54:27.519675: I tensorflow/stream_executor/cuda/cuda_dnn.cc:366] Loaded cuDNN version 8201 WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0093s vs `on_train_batch_end` time: 0.0115s). Check your callbacks. 2024-09-03 10:54:35.713655: I tensorflow/stream_executor/cuda/cuda_blas.cc:1774] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once. 200/200 - 10s - loss: 0.0110 - head: 0.0078 - thorax: 0.0070 - abdomen: 0.0109 - wingL: 0.0121 - wingR: 0.0125 - forelegL4: 0.0114 - forelegR4: 0.0109 - midlegL4: 0.0130 - midlegR4: 0.0131 - hindlegL4: 0.0131 - hindlegR4: 0.0132 - eyeL: 0.0093 - eyeR: 0.0092 - val_loss: 0.0088 - val_head: 0.0036 - val_thorax: 0.0037 - val_abdomen: 0.0073 - val_wingL: 0.0085 - val_wingR: 0.0105 - val_forelegL4: 0.0098 - val_forelegR4: 0.0095 - val_midlegL4: 0.0120 - val_midlegR4: 0.0129 - val_hindlegL4: 0.0123 - val_hindlegR4: 0.0124 - val_eyeL: 0.0057 - val_eyeR: 0.0068 - lr: 1.0000e-04 - 10s/epoch - 51ms/step Epoch 2/2 Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/viz/validation.*.png Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/viz/validation.*.png 200/200 - 6s - loss: 0.0073 - head: 0.0023 - thorax: 0.0033 - abdomen: 0.0060 - wingL: 0.0069 - wingR: 0.0082 - forelegL4: 0.0083 - forelegR4: 0.0082 - midlegL4: 0.0107 - midlegR4: 0.0114 - hindlegL4: 0.0117 - hindlegR4: 0.0117 - eyeL: 0.0033 - eyeR: 0.0033 - val_loss: 0.0064 - val_head: 0.0020 - val_thorax: 0.0030 - val_abdomen: 0.0051 - val_wingL: 0.0065 - val_wingR: 0.0072 - val_forelegL4: 0.0065 - val_forelegR4: 0.0070 - val_midlegL4: 0.0091 - val_midlegR4: 0.0105 - val_hindlegL4: 0.0105 - val_hindlegR4: 0.0105 - val_eyeL: 0.0028 - val_eyeR: 0.0030 - lr: 1.0000e-04 - 6s/epoch - 31ms/step INFO:sleap.nn.training:Finished training loop. [0.3 min] INFO:sleap.nn.training:Deleting visualization directory: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/viz INFO:sleap.nn.training:Saving evaluation metrics to model folder... Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0% ETA: -:--:-- ?Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105332.centroid.n=100/viz/validation.*.png Polling: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/viz/validation.*.png Predicting... ━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18% ETA: 0:00:01 210.8 FPS2024-09-03 10:54:44.962420: W tensorflow/core/data/root_dataset.cc:163] Optimization loop failed: CANCELLED: Operation was cancelled Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 52.8 FPS INFO:sleap.nn.evals:Saved predictions: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/labels_pr.train.slp INFO:sleap.nn.evals:Saved metrics: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/metrics.train.npz INFO:sleap.nn.evals:OKS mAP: 0.013254 Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 11.8 FPS INFO:sleap.nn.evals:Saved predictions: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/labels_pr.val.slp INFO:sleap.nn.evals:Saved metrics: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100/metrics.val.npz INFO:sleap.nn.evals:OKS mAP: 0.010202 INFO:sleap.nn.callbacks:Closing the reporter controller/context. INFO:sleap.nn.callbacks:Closing the training controller socket/context. Run Path: /home/talmolab/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/drosophila-melanogaster-courtship/models/240903_105416.centered_instance.n=100 Finished training centered_instance. ```
Terminal: Opening GUI ```bash ``` Nothing.
sleap-label ```bash (sleap_1.3) talmolab@talmolab-01-ubuntu:~$ sleap-label Saving config: /home/talmolab/.sleap/1.3.4/preferences.yaml 2024-09-03 10:45:48.326588: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:45:48.330951: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2024-09-03 10:45:48.331731: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:939] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero Software versions: SLEAP: 1.3.4 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Linux-5.15.0-78-generic-x86_64-with-debian-bookworm-sid Happy SLEAPing! :) ```
mm create sleap ```bash talmolab@talmolab-01-ubuntu:~$ mm create -y -n -c conda-forge -c nvidia -c sleap/label/dev -c sleap -c anaconda sleap=1.3.4 nvidia/noarch (check zst) Checked 0.1s nvidia/linux-64 (check zst) Checked 0.1s anaconda/noarch (check zst) Checked 0.1s anaconda/linux-64 (check zst) Checked 0.0s sleap/label/dev/noarch (check zst) Checked 0.2s sleap/label/dev/linux-64 (check zst) Checked 0.2s sleap/linux-64 (check zst) Checked 0.2s sleap/noarch (check zst) Checked 0.2s nvidia/noarch 14.7kB @ 291.8kB/s 0.1s nvidia/linux-64 210.3kB @ 2.7MB/s 0.1s sleap/label/dev/noarch 116.0 B @ 792.0 B/s 0.1s anaconda/linux-64 3.0MB @ 17.7MB/s 0.1s sleap/label/dev/linux-64 1.6kB @ 8.2kB/s 0.2s conda-forge/noarch 16.3MB @ 57.0MB/s 0.2s anaconda/noarch 402.7kB @ 1.3MB/s 0.1s sleap/linux-64 2.4kB @ 7.4kB/s 0.3s sleap/noarch 116.0 B @ 330.0 B/s 0.2s conda-forge/linux-64 37.5MB @ 51.7MB/s 0.7s error libmamba Could not solve for environment specs The following package could not be installed └─ conda-forge does not exist (perhaps a typo or a missing channel). critical libmamba Could not solve for environment specs talmolab@talmolab-01-ubuntu:~$ mm create -y -n -c conda-forge -c nvidia -c sleap/label/dev -c sleap -c anaconda sleap=1.3.4 nvidia/linux-64 Using cache nvidia/noarch Using cache anaconda/linux-64 Using cache anaconda/noarch Using cache conda-forge/linux-64 Using cache conda-forge/noarch Using cache sleap/linux-64 No change sleap/label/dev/linux-64 No change sleap/label/dev/noarch No change sleap/noarch No change error libmamba Could not solve for environment specs The following package could not be installed └─ conda-forge does not exist (perhaps a typo or a missing channel). critical libmamba Could not solve for environment specs talmolab@talmolab-01-ubuntu:~$ mm create -y -n sleap_1.3.4 -c conda-forge -c nvidia -c sleap/label/dev -c sleap -c anaconda sleap=1.3.4 conda-forge/linux-64 Using cache conda-forge/noarch Using cache nvidia/linux-64 Using cache nvidia/noarch Using cache anaconda/linux-64 Using cache anaconda/noarch Using cache sleap/label/dev/linux-64 No change sleap/label/dev/noarch No change sleap/noarch No change sleap/linux-64 No change Transaction Prefix: /home/talmolab/micromamba/envs/sleap_1.3.4 Updating specs: - sleap=1.3.4 Package Version Build Channel Size ────────────────────────────────────────────────────────────────────────────────────────── Install: ────────────────────────────────────────────────────────────────────────────────────────── + cuda-nvcc 11.3.58 h2467b9f_0 nvidia Cached + python_abi 3.7 4_cp37m conda-forge Cached + _libgcc_mutex 0.1 conda_forge conda-forge Cached + ld_impl_linux-64 2.40 hf3520f5_7 conda-forge 708kB + ca-certificates 2024.8.30 hbcca054_0 conda-forge 159kB + libgomp 14.1.0 h77fa898_1 conda-forge 460kB + _openmp_mutex 4.5 2_gnu conda-forge Cached + libgcc 14.1.0 h77fa898_1 conda-forge 846kB + libbrotlicommon 1.1.0 hb9d3cd8_2 conda-forge 69kB + libgfortran5 14.1.0 hc5f4f2c_1 conda-forge 1MB + libstdcxx 14.1.0 hc0a3c3a_1 conda-forge 4MB + libgcc-ng 14.1.0 h69a702a_1 conda-forge 52kB + libbrotlienc 1.1.0 hb9d3cd8_2 conda-forge 282kB + libbrotlidec 1.1.0 hb9d3cd8_2 conda-forge 33kB + libgfortran 14.1.0 h69a702a_1 conda-forge 52kB + libstdcxx-ng 14.1.0 h4852527_1 conda-forge 52kB + libev 4.33 hd590300_2 conda-forge 113kB + c-ares 1.33.1 heb4867d_0 conda-forge 183kB + libogg 1.3.5 h4ab18f5_0 conda-forge 206kB + yaml 0.2.5 h7f98852_2 conda-forge Cached + libsodium 1.0.18 h36c2ea0_1 conda-forge Cached + xorg-renderproto 0.11.1 h7f98852_1002 conda-forge Cached + xorg-xproto 7.0.31 h7f98852_1007 conda-forge Cached + xorg-kbproto 1.0.7 h7f98852_1002 conda-forge Cached + xorg-xextproto 7.3.0 h0b41bf4_1003 conda-forge Cached + libuuid 2.38.1 h0b41bf4_0 conda-forge Cached + xorg-libice 1.1.1 hd590300_0 conda-forge Cached + x264 1!161.3030 h7f98852_1 conda-forge Cached + lame 3.100 h166bdaf_1003 conda-forge Cached + nettle 3.6 he412f7d_0 conda-forge Cached + bzip2 1.0.8 h4bc722e_7 conda-forge 253kB + libopus 1.3.1 h7f98852_1 conda-forge Cached + alsa-lib 1.2.3.2 h166bdaf_0 conda-forge Cached + libgettextpo 0.22.5 he02047a_3 conda-forge 171kB + gettext-tools 0.22.5 he02047a_3 conda-forge 3MB + libwebp-base 1.4.0 hd590300_0 conda-forge 439kB + libdeflate 1.14 h166bdaf_0 conda-forge Cached + keyutils 1.6.1 h166bdaf_0 conda-forge Cached + xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge Cached + xorg-libxau 1.0.11 hd590300_0 conda-forge Cached + pthread-stubs 0.4 h36c2ea0_1001 conda-forge Cached + libiconv 1.17 hd590300_2 conda-forge 706kB + jpeg 9e h0b41bf4_3 conda-forge Cached + libexpat 2.6.2 h59595ed_0 conda-forge 74kB + xz 5.2.6 h166bdaf_0 conda-forge Cached + openssl 1.1.1w hd590300_0 conda-forge Cached + ncurses 6.5 he02047a_1 conda-forge 889kB + libzlib 1.2.13 h4ab18f5_6 conda-forge 62kB + libnsl 2.0.1 hd590300_0 conda-forge 33kB + libffi 3.4.2 h7f98852_5 conda-forge Cached + brotli-bin 1.1.0 hb9d3cd8_2 conda-forge 19kB + libgfortran-ng 14.1.0 h69a702a_1 conda-forge 52kB + geos 3.11.0 h27087fc_0 conda-forge Cached + pixman 0.43.2 h59595ed_0 conda-forge 387kB + gmp 6.3.0 hac33072_2 conda-forge 460kB + libasprintf 0.22.5 he8f35ee_3 conda-forge 43kB + graphite2 1.3.13 h59595ed_1003 conda-forge 97kB + lerc 4.0.0 h27087fc_0 conda-forge Cached + nspr 4.35 h27087fc_0 conda-forge Cached + icu 68.2 h9c3ff4c_0 conda-forge Cached + cudatoolkit 11.3.1 hb98b00a_13 conda-forge 633MB + libvorbis 1.3.7 h9c3ff4c_0 conda-forge Cached + zeromq 4.3.5 h59595ed_1 conda-forge 343kB + xorg-libsm 1.2.4 h7391055_0 conda-forge Cached + gnutls 3.6.13 h85f3911_1 conda-forge Cached + libgettextpo-devel 0.22.5 he02047a_3 conda-forge 37kB + libxcb 1.13 h7f98852_1004 conda-forge Cached + jasper 1.900.1 h07fcdf6_1006 conda-forge Cached + expat 2.6.2 h59595ed_0 conda-forge 138kB + mysql-common 8.0.32 h14678bc_0 conda-forge Cached + libevent 2.1.10 h9b69904_4 conda-forge Cached + libedit 3.1.20191231 he28a2e2_2 conda-forge Cached + readline 8.2 h8228510_1 conda-forge Cached + libssh2 1.10.0 haa6b8db_3 conda-forge Cached + libnghttp2 1.51.0 hdcd2b5c_0 conda-forge Cached + zstd 1.5.6 ha6fb4c9_0 conda-forge 555kB + libllvm11 11.1.0 he0ac6c6_5 conda-forge Cached + libpng 1.6.43 h2797004_0 conda-forge 288kB + pcre2 10.43 hcad00b1_0 conda-forge 951kB + zlib 1.2.13 h4ab18f5_6 conda-forge 93kB + tk 8.6.13 noxft_h4845f30_101 conda-forge 3MB + libsqlite 3.46.0 hde9e2c9_0 conda-forge 865kB + brotli 1.1.0 hb9d3cd8_2 conda-forge 19kB + fftw 3.3.10 nompi_hf1063bd_110 conda-forge 2MB + libopenblas 0.3.27 pthreads_hac2b453_1 conda-forge 6MB + libasprintf-devel 0.22.5 he8f35ee_3 conda-forge 34kB + cudnn 8.2.1.32 h86fa8c9_0 conda-forge Cached + xorg-libx11 1.8.4 h0b41bf4_0 conda-forge Cached + krb5 1.19.3 h3790be6_0 conda-forge Cached + libtiff 4.4.0 h82bc61c_5 conda-forge Cached + mysql-libs 8.0.32 h54cf53e_0 conda-forge Cached + libclang 11.1.0 default_ha53f305_1 conda-forge Cached + freetype 2.12.1 h267a509_2 conda-forge Cached + libglib 2.80.2 hf974151_0 conda-forge 4MB + openh264 2.1.1 h780b84a_0 conda-forge Cached + libxml2 2.9.12 h72842e0_0 conda-forge Cached + libprotobuf 3.16.0 h780b84a_0 conda-forge Cached + nss 3.100 hca3bf56_0 conda-forge 2MB + sqlite 3.46.0 h6d4b2fc_0 conda-forge 860kB + openblas 0.3.27 pthreads_h9eca1d5_1 conda-forge 6MB + libblas 3.9.0 23_linux64_openblas conda-forge 15kB + gettext 0.22.5 he02047a_3 conda-forge 479kB + xorg-libxext 1.3.4 h0b41bf4_2 conda-forge Cached + xorg-libxrender 0.9.10 h7f98852_1003 conda-forge Cached + libcurl 7.86.0 h7bff187_1 conda-forge Cached + libpq 13.8 hd77ab85_0 conda-forge Cached + openjpeg 2.5.0 h7d73246_1 conda-forge Cached + lcms2 2.14 h6ed2654_0 conda-forge Cached + fontconfig 2.14.2 h14ed4e7_0 conda-forge Cached + dbus 1.13.6 h5008d03_3 conda-forge Cached + ffmpeg 4.3.2 h37c90e5_3 conda-forge Cached + libxslt 1.1.33 h15afd5d_2 conda-forge Cached + libxkbcommon 1.0.3 he3ba5ed_0 conda-forge Cached + python 3.7.12 hb7a2778_100_cpython conda-forge Cached + blas 1.1 openblas conda-forge 1kB + libcblas 3.9.0 23_linux64_openblas conda-forge 15kB + liblapack 3.9.0 23_linux64_openblas conda-forge 15kB + gstreamer 1.18.5 h9f60fe5_3 conda-forge Cached + hdf5 1.10.6 nompi_h6a2412b_1114 conda-forge Cached + cairo 1.16.0 h6cf1ce9_1008 conda-forge Cached + setuptools 59.8.0 py37h89c1867_1 conda-forge Cached + liblapacke 3.9.0 23_linux64_openblas conda-forge 15kB + gst-plugins-base 1.18.5 hf529b03_3 conda-forge Cached + harfbuzz 2.9.1 h83ec7ef_1 conda-forge Cached + qt 5.12.9 hda022c4_4 conda-forge Cached + libopencv 4.5.3 py37h25009ff_1 conda-forge Cached + wheel 0.42.0 pyhd8ed1ab_0 conda-forge 58kB + pip 24.0 pyhd8ed1ab_0 conda-forge 1MB + locket 1.0.0 pyhd8ed1ab_0 conda-forge Cached + fsspec 2023.1.0 pyhd8ed1ab_0 conda-forge Cached + zipp 3.15.0 pyhd8ed1ab_0 conda-forge 17kB + toolz 0.12.1 pyhd8ed1ab_0 conda-forge 52kB + cloudpickle 2.2.1 pyhd8ed1ab_0 conda-forge Cached + threadpoolctl 3.1.0 pyh8a188c0_0 conda-forge Cached + joblib 1.3.2 pyhd8ed1ab_0 conda-forge Cached + mdurl 0.1.2 pyhd8ed1ab_0 conda-forge 15kB + six 1.16.0 pyh6c4a22f_0 conda-forge Cached + pygments 2.17.2 pyhd8ed1ab_0 conda-forge 860kB + jsonpickle 1.2 py_0 conda-forge Cached + attrs 21.4.0 pyhd8ed1ab_0 conda-forge Cached + munkres 1.1.4 pyh9f0ad1d_0 conda-forge Cached + typing_extensions 4.7.1 pyha770c72_0 conda-forge Cached + pyparsing 3.1.4 pyhd8ed1ab_0 conda-forge 90kB + packaging 23.2 pyhd8ed1ab_0 conda-forge Cached + cycler 0.11.0 pyhd8ed1ab_0 conda-forge Cached + certifi 2024.8.30 pyhd8ed1ab_0 conda-forge 164kB + pytz 2024.1 pyhd8ed1ab_0 conda-forge 189kB + cached_property 1.5.2 pyha770c72_1 conda-forge Cached + jsmin 3.0.1 pyhd8ed1ab_0 conda-forge Cached + partd 1.4.1 pyhd8ed1ab_0 conda-forge Cached + python-dateutil 2.9.0 pyhd8ed1ab_0 conda-forge 223kB + cattrs 1.1.1 pyhd8ed1ab_0 conda-forge Cached + markdown-it-py 2.2.0 pyhd8ed1ab_0 conda-forge Cached + typing-extensions 4.7.1 hd8ed1ab_0 conda-forge Cached + qtpy 2.4.1 pyhd8ed1ab_0 conda-forge 62kB + cached-property 1.5.2 hd8ed1ab_1 conda-forge Cached + rich 13.7.1 pyhd8ed1ab_0 conda-forge 184kB + pyzmq 24.0.1 py37h0c0c2a8_0 conda-forge Cached + pyyaml 6.0 py37h540881e_4 conda-forge Cached + python-rapidjson 1.9 py37hd23a5d3_0 conda-forge Cached + pyside2 5.13.2 py37hfa98aef_7 conda-forge Cached + psutil 5.9.3 py37h540881e_0 conda-forge Cached + unicodedata2 14.0.0 py37h540881e_1 conda-forge Cached + pillow 9.2.0 py37h850a105_2 conda-forge Cached + numpy 1.21.6 py37h976b520_0 conda-forge Cached + cytoolz 0.12.0 py37h540881e_0 conda-forge Cached + protobuf 3.16.0 py37hcd2ae1e_0 conda-forge Cached + importlib-metadata 4.11.4 py37h89c1867_0 conda-forge 34kB + kiwisolver 1.4.4 py37h7cecad7_0 conda-forge Cached + fonttools 4.38.0 py37h540881e_0 conda-forge Cached + imagecodecs-lite 2019.12.3 py37hc105733_5 conda-forge Cached + pywavelets 1.3.0 py37hda87dfa_1 conda-forge Cached + shapely 1.8.5 py37ha4e3bd1_0 conda-forge Cached + pandas 1.3.5 py37he8f5f7f_0 conda-forge Cached + py-opencv 4.5.3 py37h6531663_1 conda-forge Cached + h5py 3.1.0 nompi_py37h1e651dc_100 conda-forge Cached + matplotlib-base 3.5.3 py37hf395dca_2 conda-forge Cached + opencv 4.5.3 py37h89c1867_1 conda-forge Cached + dask-core 2022.2.0 pyhd8ed1ab_0 conda-forge Cached + patsy 0.5.6 pyhd8ed1ab_0 conda-forge 187kB + imageio 2.35.1 pyh12aca89_0 conda-forge 293kB + tifffile 2020.6.3 py_0 conda-forge Cached + scipy 1.7.3 py37hf838250_2 anaconda 23MB + tensorflow 2.7.0 py37hb93dfd8_4 sleap/label/dev 487MB + statsmodels 0.13.2 py37hda87dfa_0 conda-forge Cached + scikit-learn 1.0 py37hf0f1638_1 conda-forge Cached + seaborn-base 0.12.2 pyhd8ed1ab_0 conda-forge Cached + pykalman 0.9.7 pyhd8ed1ab_0 conda-forge 232kB + networkx 2.7 pyhd8ed1ab_0 conda-forge Cached + scikit-video 1.1.11 pyh24bf2e0_0 conda-forge Cached + tensorflow-hub 0.13.0 pyh56297ac_0 conda-forge Cached + seaborn 0.12.2 hd8ed1ab_0 conda-forge Cached + scikit-image 0.19.2 py37he8f5f7f_0 conda-forge Cached + imgaug 0.4.0 pyhd8ed1ab_1 conda-forge Cached + sleap 1.3.4 py37_2 sleap/label/dev 5MB Summary: Install: 195 packages Total download: 1GB ```

Windows

GUI Training ![image](https://github.com/user-attachments/assets/bf356b6f-5406-4860-8f4c-824b27d45932) ![image](https://github.com/user-attachments/assets/08342fcc-138f-4f6e-b159-31d942a137fb)
Terminal: Training ```bash Resetting monitor window. Polling: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\viz\validation.*.png Start training multi_instance... ['sleap-train', 'C:\\Users\\Liezl\\AppData\\Local\\Temp\\tmp65eu9h6c\\240831_110334_training_job.json', 'C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp', '--zmq', '--save_viz'] INFO:sleap.nn.training:Versions: SLEAP: 1.3.4 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Windows-10-10.0.22621-SP0 INFO:sleap.nn.training:Training labels file: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Training profile: C:\Users\Liezl\AppData\Local\Temp\tmp65eu9h6c\240831_110334_training_job.json INFO:sleap.nn.training: INFO:sleap.nn.training:Arguments: INFO:sleap.nn.training:{ "training_job_path": "C:\\Users\\Liezl\\AppData\\Local\\Temp\\tmp65eu9h6c\\240831_110334_training_job.json", "labels_path": "C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp", "video_paths": [ "" ], "val_labels": null, "test_labels": null, "base_checkpoint": null, "tensorboard": false, "save_viz": true, "zmq": true, "run_name": "", "prefix": "", "suffix": "", "cpu": false, "first_gpu": false, "last_gpu": false, "gpu": "auto" } INFO:sleap.nn.training: INFO:sleap.nn.training:Training job: INFO:sleap.nn.training:{ "data": { "labels": { "training_labels": "D:\\Users\\Liezl\\ProjectsData\\sleap-estimates-animal-poses\\datasets\\drosophila-melanogaster-courtship\\courtship_labels.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 7, 50, 29, 42, 73, 67, 89, 46, 17, 47, 11, 65, 16, 69, 13, 72, 93, 8, 23, 6, 9, 5, 97, 53, 91, 19, 100, 71, 31, 94, 36, 85, 18, 83, 3, 82, 21, 74, 1, 86, 81, 64, 51, 30, 54, 52, 58, 95, 92, 62, 48, 76, 27, 45, 15, 57, 79, 4, 56, 98, 84, 38, 78, 34, 90, 63, 87, 25, 44, 32, 2, 28, 55, 22, 61, 66, 33, 41, 14, 88, 26, 68, 12, 39, 60, 99, 24, 77, 43, 10, 80 ], "validation_inds": [ 37, 0, 96, 40, 49, 70, 75, 20, 35, 59 ], "test_inds": null, "search_path_hints": [ "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 1.0, "pad_to_stride": 32, "resize_and_pad_to_target": true, "target_height": 1024, "target_width": 1024 }, "instance_cropping": { "center_on_part": null, "crop_size": null, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 32, "output_stride": 4, "filters": 16, "filters_rate": 2.0, "middle_block": true, "up_interpolate": true, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": null, "centered_instance": null, "multi_instance": { "confmaps": { "part_names": [ "head", "thorax", "abdomen", "wingL", "wingR", "forelegL4", "forelegR4", "midlegL4", "midlegR4", "hindlegL4", "hindlegR4", "eyeL", "eyeR" ], "sigma": 2.5, "output_stride": 4, "loss_weight": 1.0, "offset_refinement": false }, "pafs": { "edges": [ [ "thorax", "head" ], [ "thorax", "abdomen" ], [ "thorax", "wingL" ], [ "thorax", "wingR" ], [ "thorax", "forelegL4" ], [ "thorax", "forelegR4" ], [ "thorax", "midlegL4" ], [ "thorax", "midlegR4" ], [ "thorax", "hindlegL4" ], [ "thorax", "hindlegR4" ], [ "head", "eyeL" ], [ "head", "eyeR" ] ], "sigma": 75.0, "output_stride": 8, "loss_weight": 1.0 } }, "multi_class_bottomup": null, "multi_class_topdown": null }, "base_checkpoint": null }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": true, "rotation_min_angle": -180.0, "rotation_max_angle": 180.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 4, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 2, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-08, "plateau_patience": 10 } }, "outputs": { "save_outputs": true, "run_name": "240831_110334.multi_instance.n=101", "run_name_prefix": "", "run_name_suffix": "", "runs_folder": "C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\\models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.4.1a2", "filename": "C:\\Users\\Liezl\\AppData\\Local\\Temp\\tmp65eu9h6c\\240831_110334_training_job.json" } INFO:sleap.nn.training: INFO:sleap.nn.training:Auto-selected GPU 0 with 11675 MiB of free memory. INFO:sleap.nn.training:Using GPU 0 for acceleration. INFO:sleap.nn.training:Disabled GPU memory pre-allocation. INFO:sleap.nn.training:System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initalized: False Memory growth: True INFO:sleap.nn.training: INFO:sleap.nn.training:Initializing trainer... INFO:sleap.nn.training:Loading training labels from: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Creating training and validation splits from validation fraction: 0.1 INFO:sleap.nn.training: Splits: Training = 91 / Validation = 10. INFO:sleap.nn.training:Setting up for training... INFO:sleap.nn.training:Setting up pipeline builders... INFO:sleap.nn.training:Setting up model... INFO:sleap.nn.training:Building test pipeline... 2024-08-31 11:03:41.866195: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-08-31 11:03:42.671549: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 9599 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3060, pci bus id: 0000:02:00.0, compute capability: 8.6 INFO:sleap.nn.training:Loaded test example. [2.209s] INFO:sleap.nn.training: Input shape: (1024, 1024, 1) INFO:sleap.nn.training:Created Keras model. INFO:sleap.nn.training: Backbone: UNet(stacks=1, filters=16, filters_rate=2.0, kernel_size=3, stem_kernel_size=7, convs_per_block=2, stem_blocks=0, down_blocks=5, middle_block=True, up_blocks=3, up_interpolate=True, block_contraction=False) INFO:sleap.nn.training: Max stride: 32 INFO:sleap.nn.training: Parameters: 7,819,861 INFO:sleap.nn.training: Heads: INFO:sleap.nn.training: [0] = MultiInstanceConfmapsHead(part_names=['head', 'thorax', 'abdomen', 'wingL', 'wingR', 'forelegL4', 'forelegR4', 'midlegL4', 'midlegR4', 'hindlegL4', 'hindlegR4', 'eyeL', 'eyeR'], sigma=2.5, output_stride=4, loss_weight=1.0) INFO:sleap.nn.training: [1] = PartAffinityFieldsHead(edges=[('thorax', 'head'), ('thorax', 'abdomen'), ('thorax', 'wingL'), ('thorax', 'wingR'), ('thorax', 'forelegL4'), ('thorax', 'forelegR4'), ('thorax', 'midlegL4'), ('thorax', 'midlegR4'), ('thorax', 'hindlegL4'), ('thorax', 'hindlegR4'), ('head', 'eyeL'), ('head', 'eyeR')], sigma=75.0, output_stride=8, loss_weight=1.0) INFO:sleap.nn.training: Outputs: INFO:sleap.nn.training: [0] = KerasTensor(type_spec=TensorSpec(shape=(None, 256, 256, 13), dtype=tf.float32, name=None), name='MultiInstanceConfmapsHead/BiasAdd:0', description="created by layer 'MultiInstanceConfmapsHead'") INFO:sleap.nn.training: [1] = KerasTensor(type_spec=TensorSpec(shape=(None, 128, 128, 24), dtype=tf.float32, name=None), name='PartAffinityFieldsHead/BiasAdd:0', description="created by layer 'PartAffinityFieldsHead'") INFO:sleap.nn.training:Training from scratch INFO:sleap.nn.training:Setting up data pipelines... INFO:sleap.nn.training:Training set: n = 91 INFO:sleap.nn.training:Validation set: n = 10 INFO:sleap.nn.training:Setting up optimization... INFO:sleap.nn.training: Learning rate schedule: LearningRateScheduleConfig(reduce_on_plateau=True, reduction_factor=0.5, plateau_min_delta=1e-06, plateau_patience=5, plateau_cooldown=3, min_learning_rate=1e-08) INFO:sleap.nn.training: Early stopping: EarlyStoppingConfig(stop_training_on_plateau=True, plateau_min_delta=1e-08, plateau_patience=10) INFO:sleap.nn.training:Setting up outputs... INFO:sleap.nn.callbacks:Training controller subscribed to: tcp://127.0.0.1:9000 (topic: ) INFO:sleap.nn.training: ZMQ controller subcribed to: tcp://127.0.0.1:9000 INFO:sleap.nn.callbacks:Progress reporter publishing on: tcp://127.0.0.1:9001 for: not_set INFO:sleap.nn.training: ZMQ progress reporter publish on: tcp://127.0.0.1:9001 INFO:sleap.nn.training:Created run path: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101 INFO:sleap.nn.training:Setting up visualization... INFO:sleap.nn.training:Finished trainer set up. [5.1s] INFO:sleap.nn.training:Creating tf.data.Datasets for training data generation... INFO:sleap.nn.training:Finished creating training datasets. [7.2s] INFO:sleap.nn.training:Starting training loop... Epoch 1/2 2024-08-31 11:03:57.202413: I tensorflow/stream_executor/cuda/cuda_dnn.cc:366] Loaded cuDNN version 8201 WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0176s vs `on_train_batch_end` time: 0.1818s). Check your callbacks. 2024-08-31 11:05:17.899812: I tensorflow/stream_executor/cuda/cuda_blas.cc:1774] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once. 2024-08-31 11:05:20.997320: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.27GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available. 2024-08-31 11:05:21.326703: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.27GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available. 2024-08-31 11:05:21.392040: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.27GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available. 200/200 - 90s - loss: 0.0012 - MultiInstanceConfmapsHead_loss: 5.1135e-04 - PartAffinityFieldsHead_loss: 7.3340e-04 - val_loss: 0.0011 - val_MultiInstanceConfmapsHead_loss: 4.4563e-04 - val_PartAffinityFieldsHead_loss: 6.5197e-04 - lr: 1.0000e-04 - 90s/epoch - 450ms/step Epoch 2/2 Polling: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\viz\validation.*.png 200/200 - 58s - loss: 8.8963e-04 - MultiInstanceConfmapsHead_loss: 3.6029e-04 - PartAffinityFieldsHead_loss: 5.2933e-04 - val_loss: 6.1292e-04 - val_MultiInstanceConfmapsHead_loss: 2.5777e-04 - val_PartAffinityFieldsHead_loss: 3.5515e-04 - lr: 1.0000e-04 - 58s/epoch - 291ms/step Polling: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\viz\validation.*.png INFO:sleap.nn.training:Finished training loop. [2.5 min] INFO:sleap.nn.training:Deleting visualization directory: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\viz INFO:sleap.nn.training:Saving evaluation metrics to model folder... Predicting... ---------------------------------------- 100% ETA: 0:00:00 0.6 FPS INFO:sleap.nn.evals:Saved predictions: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\labels_pr.train.slp INFO:sleap.nn.evals:Saved metrics: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\metrics.train.npz INFO:sleap.nn.evals:OKS mAP: 0.000000 Predicting... ---------------------------------------- 100% ETA: 0:00:00 1.2 FPS INFO:sleap.nn.evals:Saved predictions: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\labels_pr.val.slp INFO:sleap.nn.evals:Saved metrics: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101\metrics.val.npz INFO:sleap.nn.evals:OKS mAP: 0.000000 INFO:sleap.nn.callbacks:Closing the reporter controller/context. INFO:sleap.nn.callbacks:Closing the training controller socket/context. Run Path: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101 Finished training multi_instance. Command line call: sleap-track C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp --only-suggested-frames -m C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\models\240831_110334.multi_instance.n=101 -o C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\predictions\courtship_labels.slp.240831_110650.predictions.slp --verbosity json --no-empty-frames Started inference at: 2024-08-31 11:06:56.316214 Args: { 'data_path': 'C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp', 'models': [ 'C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\\models\\240831_110334.multi_instance.n=101' ], 'frames': '', 'only_labeled_frames': False, 'only_suggested_frames': True, 'output': 'C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\\predictions\\courtship_labels.slp.240831_110650.predictions.slp', 'no_empty_frames': True, 'verbosity': 'json', 'video.dataset': None, 'video.input_format': 'channels_last', 'video.index': '', 'cpu': False, 'first_gpu': False, 'last_gpu': False, 'gpu': 'auto', 'max_edge_length_ratio': 0.25, 'dist_penalty_weight': 1.0, 'batch_size': 4, 2024-08-31 11:06:57.480056: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 'open_in_gui': False, 'peak_threshold': 0.2, 'max_instances': None, 'tracking.tracker': None, 'tracking.max_tracking': None, 'tracking.max_tracks': None, 'tracking.target_instance_count': None, 'tracking.pre_cull_to_target': None, 2024-08-31 11:06:57.911416: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 9599 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3060, pci bus id: 0000:02:00.0, compute capability: 8.6 'tracking.pre_cull_iou_threshold': None, 'tracking.post_connect_single_breaks': None, 'tracking.clean_instance_count': None, 'tracking.clean_iou_threshold': None, 'tracking.similarity': None, 'tracking.match': None, 'tracking.robust': None, 'tracking.track_window': None, 'tracking.min_new_track_points': None, 'tracking.min_match_points': None, 'tracking.img_scale': None, 'tracking.of_window_size': None, 'tracking.of_max_levels': None, 'tracking.save_shifted_instances': None, 'tracking.kf_node_indices': None, 'tracking.kf_init_frame_count': None } INFO:sleap.nn.inference:Auto-selected GPU 0 with 11662 MiB of free memory. 2024-08-31 11:07:05.171639: I tensorflow/stream_executor/cuda/cuda_dnn.cc:366] Loaded cuDNN version 8201 Versions: SLEAP: 1.3.4 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Windows-10-10.0.22621-SP0 System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initalized: False Memory growth: True Finished inference at: 2024-08-31 11:07:16.914447 Total runtime: 20.598233461380005 secs Predicted frames: 39/39 Provenance: { 'model_paths': [ 'C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\\models\\240831_110334.multi_instance.n=101\\training_config.json' ], 'predictor': 'BottomUpPredictor', 'sleap_version': '1.3.4', 'platform': 'Windows-10-10.0.22621-SP0', 'command': 'C:\\Users\\Liezl\\miniconda3\\envs\\sleap_1.3.4\\Scripts\\sleap-track C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp --only-suggested-frames -m C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\\models\\240831_110334.multi_instance.n=101 -o C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\\predictions\\courtship_labels.slp.240831_110650.predictions.slp --verbosity json --no-empty-frames', 'data_path': 'C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship/courtship_labels.slp', 'output_path': 'C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\\predictions\\courtship_labels.slp.240831_110650.predictions.slp', 'total_elapsed': 20.598233461380005, 'start_timestamp': '2024-08-31 11:06:56.316214', 'finish_timestamp': '2024-08-31 11:07:16.914447' } Saved output: C:/Users/Liezl/Projects/sleap-estimates-animal-poses/datasets/drosophila-melanogaster-courtship\predictions\courtship_labels.slp.240831_110650.predictions.slp Process return code: 0 ```
Terminal: Opening Training GUI ```bash unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' ```
sleap-label ![image](https://github.com/user-attachments/assets/f31a7665-250c-48fd-bd4c-7ac30c2b2b15) ```bash (sleap_1.3.4) λ sleap-label Saving config: C:\Users\Liezl/.sleap/1.3.4/preferences.yaml Software versions: SLEAP: 1.3.4 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Windows-10-10.0.22621-SP0 Happy SLEAPing! :) ```
mamba create sleap ```bash (base) λ mamba create -y -n sleap_1.3.4 -c conda-forge -c nvidia -c sleap/label/dev -c sleap -c anaconda sleap=1.3.4 __ __ __ __ / \ / \ / \ / \ / \/ \/ \/ \ ███████████████/ /██/ /██/ /██/ /████████████████████████ / / \ / \ / \ / \ \____ / / \_/ \_/ \_/ \ o \__, / _/ \_____/ ` |/ ███╗ ███╗ █████╗ ███╗ ███╗██████╗ █████╗ ████╗ ████║██╔══██╗████╗ ████║██╔══██╗██╔══██╗ ██╔████╔██║███████║██╔████╔██║██████╔╝███████║ ██║╚██╔╝██║██╔══██║██║╚██╔╝██║██╔══██╗██╔══██║ ██║ ╚═╝ ██║██║ ██║██║ ╚═╝ ██║██████╔╝██║ ██║ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝ mamba (1.4.2) supported by @QuantStack GitHub: https://github.com/mamba-org/mamba Twitter: https://twitter.com/QuantStack █████████████████████████████████████████████████████████████ Looking for: ['sleap=1.3.4'] sleap/label/dev/win-64 1.5kB @ 4.1kB/s 0.4s sleap/label/dev/noarch 135.0 B @ 243.0 B/s 0.2s nvidia/noarch 18.3kB @ 31.2kB/s 0.6s sleap/noarch No change anaconda/noarch No change nvidia/win-64 110.3kB @ 111.9kB/s 1.0s sleap/win-64 No change anaconda/win-64 3.2MB @ 2.0MB/s 1.2s conda-forge/noarch 18.8MB @ 6.6MB/s 3.5s conda-forge/win-64 28.2MB @ 6.2MB/s 5.6s Transaction Prefix: C:\Users\Liezl\miniconda3\envs\sleap_1.3.4 Updating specs: - sleap=1.3.4 Package Version Build Channel Size ------------------------------------------------------------------------------------------------------------ Install: ------------------------------------------------------------------------------------------------------------ + attrs 21.4.0 pyhd8ed1ab_0 conda-forge/noarch Cached + brotli 1.1.0 hcfcfb64_1 conda-forge/win-64 Cached + brotli-bin 1.1.0 hcfcfb64_1 conda-forge/win-64 Cached + ca-certificates 2024.8.30 h56e8100_0 conda-forge/win-64 159kB + cached-property 1.5.2 hd8ed1ab_1 conda-forge/noarch Cached + cached_property 1.5.2 pyha770c72_1 conda-forge/noarch Cached + cattrs 1.1.1 pyhd8ed1ab_0 conda-forge/noarch Cached + certifi 2024.7.4 pyhd8ed1ab_0 conda-forge/noarch Cached + cloudpickle 2.2.1 pyhd8ed1ab_0 conda-forge/noarch Cached + cuda-nvcc 11.3.58 hb8d16a4_0 nvidia/win-64 Cached + cudatoolkit 11.3.1 hf2f0253_13 conda-forge/win-64 Cached + cudnn 8.2.1.32 h754d62a_0 conda-forge/win-64 Cached + cycler 0.11.0 pyhd8ed1ab_0 conda-forge/noarch Cached + cytoolz 0.12.0 py37hcc03f2d_0 conda-forge/win-64 Cached + dask-core 2022.2.0 pyhd8ed1ab_0 conda-forge/noarch Cached + fonttools 4.38.0 py37h51bd9d9_0 conda-forge/win-64 Cached + freeglut 3.2.2 he0c23c2_3 conda-forge/win-64 Cached + freetype 2.12.1 hdaf720e_2 conda-forge/win-64 Cached + fsspec 2023.1.0 pyhd8ed1ab_0 conda-forge/noarch Cached + geos 3.11.0 h39d44d4_0 conda-forge/win-64 Cached + h5py 3.7.0 nompi_py37h24adfc3_101 conda-forge/win-64 Cached + hdf5 1.12.2 nompi_h2a0e4a3_101 conda-forge/win-64 11MB + icu 69.1 h0e60522_0 conda-forge/win-64 Cached + imagecodecs-lite 2019.12.3 py37h0b711f8_5 conda-forge/win-64 Cached + imageio 2.35.1 pyh12aca89_0 conda-forge/noarch Cached + imgaug 0.4.0 pyhd8ed1ab_1 conda-forge/noarch Cached + importlib-metadata 4.11.4 py37h03978a9_0 conda-forge/win-64 Cached + intel-openmp 2024.2.1 h57928b3_1083 conda-forge/win-64 Cached + jasper 2.0.33 hc2e4405_1 conda-forge/win-64 Cached + joblib 1.3.2 pyhd8ed1ab_0 conda-forge/noarch Cached + jpeg 9e hcfcfb64_3 conda-forge/win-64 Cached + jsmin 3.0.1 pyhd8ed1ab_0 conda-forge/noarch Cached + jsonpickle 1.2 py_0 conda-forge/noarch Cached + kiwisolver 1.4.4 py37h8c56517_0 conda-forge/win-64 Cached + krb5 1.20.1 h6609f42_0 conda-forge/win-64 Cached + lcms2 2.14 h90d422f_0 conda-forge/win-64 Cached + lerc 4.0.0 h63175ca_0 conda-forge/win-64 Cached + libaec 1.1.3 h63175ca_0 conda-forge/win-64 Cached + libblas 3.9.0 23_win64_mkl conda-forge/win-64 Cached + libbrotlicommon 1.1.0 hcfcfb64_1 conda-forge/win-64 Cached + libbrotlidec 1.1.0 hcfcfb64_1 conda-forge/win-64 Cached + libbrotlienc 1.1.0 hcfcfb64_1 conda-forge/win-64 Cached + libcblas 3.9.0 23_win64_mkl conda-forge/win-64 Cached + libclang 13.0.1 default_h66ee7f4_6 conda-forge/win-64 20MB + libcurl 8.1.2 h68f0423_0 conda-forge/win-64 Cached + libdeflate 1.14 hcfcfb64_0 conda-forge/win-64 Cached + libhwloc 2.11.1 default_h8125262_1000 conda-forge/win-64 Cached + libiconv 1.17 hcfcfb64_2 conda-forge/win-64 Cached + liblapack 3.9.0 23_win64_mkl conda-forge/win-64 Cached + liblapacke 3.9.0 23_win64_mkl conda-forge/win-64 Cached + libopencv 4.5.1 py37ha0199f4_0 conda-forge/win-64 Cached + libpng 1.6.43 h19919ed_0 conda-forge/win-64 Cached + libprotobuf 3.21.8 h12be248_0 conda-forge/win-64 Cached + libsodium 1.0.18 h8d14728_1 conda-forge/win-64 Cached + libsqlite 3.46.0 h2466b09_0 conda-forge/win-64 Cached + libssh2 1.10.0 h680486a_3 conda-forge/win-64 Cached + libtiff 4.4.0 hc4f729c_5 conda-forge/win-64 Cached + libwebp-base 1.4.0 hcfcfb64_0 conda-forge/win-64 Cached + libxcb 1.13 hcd874cb_1004 conda-forge/win-64 Cached + libxml2 2.12.7 h283a6d9_1 conda-forge/win-64 Cached + libxslt 1.1.39 h3df6e99_0 conda-forge/win-64 Cached + libzlib 1.2.13 h2466b09_6 conda-forge/win-64 Cached + locket 1.0.0 pyhd8ed1ab_0 conda-forge/noarch Cached + m2w64-gcc-libgfortran 5.3.0 6 conda-forge/win-64 Cached + m2w64-gcc-libs 5.3.0 7 conda-forge/win-64 Cached + m2w64-gcc-libs-core 5.3.0 7 conda-forge/win-64 Cached + m2w64-gmp 6.1.0 2 conda-forge/win-64 Cached + m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge/win-64 Cached + markdown-it-py 2.2.0 pyhd8ed1ab_0 conda-forge/noarch Cached + matplotlib-base 3.5.3 py37hbaab90a_2 conda-forge/win-64 Cached + mdurl 0.1.2 pyhd8ed1ab_0 conda-forge/noarch Cached + mkl 2024.1.0 h66d3029_694 conda-forge/win-64 Cached + msys2-conda-epoch 20160418 1 conda-forge/win-64 Cached + munkres 1.1.4 pyh9f0ad1d_0 conda-forge/noarch Cached + networkx 2.6.3 pyhd8ed1ab_1 conda-forge/noarch Cached + numpy 1.21.6 py37h2830a78_0 conda-forge/win-64 Cached + opencv 4.5.1 py37h03978a9_0 conda-forge/win-64 22kB + openjpeg 2.5.0 hc9384bd_1 conda-forge/win-64 Cached + openssl 1.1.1w hcfcfb64_0 conda-forge/win-64 Cached + packaging 23.2 pyhd8ed1ab_0 conda-forge/noarch Cached + pandas 1.3.5 py37h9386db6_0 conda-forge/win-64 Cached + partd 1.4.1 pyhd8ed1ab_0 conda-forge/noarch Cached + patsy 0.5.6 pyhd8ed1ab_0 conda-forge/noarch Cached + pillow 9.2.0 py37h42a8222_2 conda-forge/win-64 Cached + pip 24.0 pyhd8ed1ab_0 conda-forge/noarch Cached + protobuf 4.21.8 py37h7f67f24_0 conda-forge/win-64 Cached + psutil 5.9.3 py37h51bd9d9_0 conda-forge/win-64 Cached + pthread-stubs 0.4 hcd874cb_1001 conda-forge/win-64 Cached + pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge/win-64 Cached + py-opencv 4.5.1 py37heaed05f_0 conda-forge/win-64 24kB + pygments 2.17.2 pyhd8ed1ab_0 conda-forge/noarch Cached + pykalman 0.9.7 pyhd8ed1ab_0 conda-forge/noarch Cached + pyparsing 3.1.4 pyhd8ed1ab_0 conda-forge/noarch Cached + pyside2 5.13.2 py37h760f651_8 conda-forge/win-64 Cached + python 3.7.12 h7840368_100_cpython conda-forge/win-64 Cached + python-dateutil 2.9.0 pyhd8ed1ab_0 conda-forge/noarch Cached + python-rapidjson 1.9 py37h7f67f24_0 conda-forge/win-64 Cached + python_abi 3.7 4_cp37m conda-forge/win-64 Cached + pytz 2024.1 pyhd8ed1ab_0 conda-forge/noarch Cached + pywavelets 1.3.0 py37h3a130e4_1 conda-forge/win-64 Cached + pyyaml 6.0 py37hcc03f2d_4 conda-forge/win-64 Cached + pyzmq 24.0.1 py37h7347f05_0 conda-forge/win-64 Cached + qt 5.12.9 h556501e_6 conda-forge/win-64 Cached + qtpy 2.4.1 pyhd8ed1ab_0 conda-forge/noarch Cached + rich 13.7.1 pyhd8ed1ab_0 conda-forge/noarch Cached + scikit-image 0.19.3 py37h3182a2c_1 conda-forge/win-64 Cached + scikit-learn 1.0 py37ha78be43_1 conda-forge/win-64 Cached + scikit-video 1.1.11 pyh24bf2e0_0 conda-forge/noarch Cached + scipy 1.7.3 py37hb6553fb_0 conda-forge/win-64 Cached + seaborn 0.12.2 hd8ed1ab_0 conda-forge/noarch Cached + seaborn-base 0.12.2 pyhd8ed1ab_0 conda-forge/noarch Cached + setuptools 59.8.0 py37h03978a9_1 conda-forge/win-64 Cached + shapely 1.8.5 py37h475e9a0_0 conda-forge/win-64 Cached + six 1.16.0 pyh6c4a22f_0 conda-forge/noarch Cached + sleap 1.3.4 py37_2 sleap/label/dev/win-64 7MB + sqlite 3.46.0 h2466b09_0 conda-forge/win-64 Cached + statsmodels 0.13.2 py37h3a130e4_0 conda-forge/win-64 Cached + tbb 2021.12.0 hc790b64_4 conda-forge/win-64 Cached + tensorflow 2.7.0 py37h5685391_4 sleap/label/dev/win-64 Cached + tensorflow-hub 0.12.0 pyhca92ed8_0 conda-forge/noarch Cached + threadpoolctl 3.1.0 pyh8a188c0_0 conda-forge/noarch Cached + tifffile 2020.6.3 py_0 conda-forge/noarch Cached + tk 8.6.13 h5226925_1 conda-forge/win-64 Cached + toolz 0.12.1 pyhd8ed1ab_0 conda-forge/noarch Cached + typing-extensions 4.7.1 hd8ed1ab_0 conda-forge/noarch Cached + typing_extensions 4.7.1 pyha770c72_0 conda-forge/noarch Cached + ucrt 10.0.22621.0 h57928b3_0 conda-forge/win-64 Cached + unicodedata2 14.0.0 py37hcc03f2d_1 conda-forge/win-64 Cached + vc 14.3 h8a93ad2_20 conda-forge/win-64 Cached + vc14_runtime 14.40.33810 hcc2c482_20 conda-forge/win-64 Cached + vs2015_runtime 14.40.33810 h3bf8584_20 conda-forge/win-64 Cached + wheel 0.42.0 pyhd8ed1ab_0 conda-forge/noarch Cached + xorg-libxau 1.0.11 hcd874cb_0 conda-forge/win-64 Cached + xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge/win-64 Cached + xz 5.2.6 h8d14728_0 conda-forge/win-64 Cached + yaml 0.2.5 h8ffe710_2 conda-forge/win-64 Cached + zeromq 4.3.4 h0e60522_1 conda-forge/win-64 Cached + zipp 3.15.0 pyhd8ed1ab_0 conda-forge/noarch Cached + zlib 1.2.13 h2466b09_6 conda-forge/win-64 Cached + zstd 1.5.6 h0ea2cb4_0 conda-forge/win-64 Cached Summary: Install: 140 packages Total download: 39MB ```

Mac

GUI Training ![image](https://github.com/user-attachments/assets/7c2bdc37-3455-4e3c-b7f8-b98063e03fb3) ![image](https://github.com/user-attachments/assets/7c6d0e3c-1854-440d-8e37-e38db34f6a76)
Terminal: Opening Training GUI ```bash 2024-08-31 10:38:42.835 python[28887:4467799] +[CATransaction synchronize] called within transaction unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' unhashable type: 'dict' qt.qpa.fonts: Populating font family aliases took 123 ms. Replace uses of missing font family ".AppleSystemUIFont" with one that exists to avoid this cost. ```
Terminal: Training ```bash Resetting monitor window. Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/viz/validation.*.png Start training centroid... ['sleap-train', '/var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpdf8ag4oh/240831_104002_training_job.json', '/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp', '--zmq', '--save_viz'] INFO:sleap.nn.training:Versions: SLEAP: 1.3.4 TensorFlow: 2.9.2 Numpy: 1.22.4 Python: 3.9.15 OS: macOS-13.5-arm64-arm-64bit INFO:sleap.nn.training:Training labels file: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Training profile: /var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpdf8ag4oh/240831_104002_training_job.json INFO:sleap.nn.training: INFO:sleap.nn.training:Arguments: INFO:sleap.nn.training:{ "training_job_path": "/var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpdf8ag4oh/240831_104002_training_job.json", "labels_path": "/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp", "video_paths": [ "" ], "val_labels": null, "test_labels": null, "base_checkpoint": null, "tensorboard": false, "save_viz": true, "zmq": true, "run_name": "", "prefix": "", "suffix": "", "cpu": false, "first_gpu": false, "last_gpu": false, "gpu": "auto" } INFO:sleap.nn.training: INFO:sleap.nn.training:Training job: INFO:sleap.nn.training:{ "data": { "labels": { "training_labels": "/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 12, 98, 101, 71, 2, 95, 86, 50, 63, 90, 87, 37, 58, 13, 43, 16, 40, 24, 82, 44, 67, 10, 26, 84, 49, 6, 48, 53, 100, 47, 61, 21, 15, 52, 75, 30, 59, 72, 56, 80, 5, 102, 94, 27, 69, 74, 38, 73, 29, 20, 33, 42, 81, 14, 62, 78, 70, 7, 64, 45, 77, 85, 3, 54, 51, 99, 39, 31, 46, 66, 93, 19, 83, 11, 0, 92, 25, 8, 60, 22, 28, 36, 1, 9, 55, 57, 17, 88, 65, 97, 96, 23, 41 ], "validation_inds": [ 76, 79, 4, 89, 34, 35, 32, 91, 68, 18 ], "test_inds": null, "search_path_hints": [ "", "", "", "", "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 0.5, "pad_to_stride": 16, "resize_and_pad_to_target": true, "target_height": 1024, "target_width": 1024 }, "instance_cropping": { "center_on_part": "thorax", "crop_size": null, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 16, "output_stride": 2, "filters": 16, "filters_rate": 2.0, "middle_block": true, "up_interpolate": true, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": { "anchor_part": "thorax", "sigma": 2.5, "output_stride": 2, "loss_weight": 1.0, "offset_refinement": false }, "centered_instance": null, "multi_instance": null, "multi_class_bottomup": null, "multi_class_topdown": null }, "base_checkpoint": null }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": true, "rotation_min_angle": -180.0, "rotation_max_angle": 180.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 4, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 2, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-08, "plateau_patience": 20 } }, "outputs": { "save_outputs": true, "run_name": "240831_104002.centroid.n=103", "run_name_prefix": "", "run_name_suffix": "", "runs_folder": "/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.4.1a2", "filename": "/var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpdf8ag4oh/240831_104002_training_job.json" } INFO:sleap.nn.training: INFO:sleap.nn.training:Failed to query GPU memory from nvidia-smi. Defaulting to first GPU. INFO:sleap.nn.training:Using GPU 0 for acceleration. INFO:sleap.nn.training:Disabled GPU memory pre-allocation. INFO:sleap.nn.training:System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initalized: False Memory growth: True INFO:sleap.nn.training: INFO:sleap.nn.training:Initializing trainer... INFO:sleap.nn.training:Loading training labels from: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Creating training and validation splits from validation fraction: 0.1 INFO:sleap.nn.training: Splits: Training = 93 / Validation = 10. INFO:sleap.nn.training:Setting up for training... INFO:sleap.nn.training:Setting up pipeline builders... INFO:sleap.nn.training:Setting up model... INFO:sleap.nn.training:Building test pipeline... Metal device set to: Apple M2 Pro systemMemory: 16.00 GB maxCacheSize: 5.33 GB 2024-08-31 10:40:07.306830: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support. 2024-08-31 10:40:07.307008: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) 2024-08-31 10:40:07.579919: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz INFO:sleap.nn.training:Loaded test example. [0.908s] INFO:sleap.nn.training: Input shape: (512, 512, 1) INFO:sleap.nn.training:Created Keras model. INFO:sleap.nn.training: Backbone: UNet(stacks=1, filters=16, filters_rate=2.0, kernel_size=3, stem_kernel_size=7, convs_per_block=2, stem_blocks=0, down_blocks=4, middle_block=True, up_blocks=3, up_interpolate=True, block_contraction=False) INFO:sleap.nn.training: Max stride: 16 INFO:sleap.nn.training: Parameters: 1,953,105 INFO:sleap.nn.training: Heads: INFO:sleap.nn.training: [0] = CentroidConfmapsHead(anchor_part='thorax', sigma=2.5, output_stride=2, loss_weight=1.0) INFO:sleap.nn.training: Outputs: INFO:sleap.nn.training: [0] = KerasTensor(type_spec=TensorSpec(shape=(None, 256, 256, 1), dtype=tf.float32, name=None), name='CentroidConfmapsHead/BiasAdd:0', description="created by layer 'CentroidConfmapsHead'") INFO:sleap.nn.training:Training from scratch INFO:sleap.nn.training:Setting up data pipelines... INFO:sleap.nn.training:Training set: n = 93 INFO:sleap.nn.training:Validation set: n = 10 INFO:sleap.nn.training:Setting up optimization... INFO:sleap.nn.training: Learning rate schedule: LearningRateScheduleConfig(reduce_on_plateau=True, reduction_factor=0.5, plateau_min_delta=1e-06, plateau_patience=5, plateau_cooldown=3, min_learning_rate=1e-08) INFO:sleap.nn.training: Early stopping: EarlyStoppingConfig(stop_training_on_plateau=True, plateau_min_delta=1e-08, plateau_patience=20) INFO:sleap.nn.training:Setting up outputs... INFO:sleap.nn.callbacks:Training controller subscribed to: tcp://127.0.0.1:9000 (topic: ) INFO:sleap.nn.training: ZMQ controller subcribed to: tcp://127.0.0.1:9000 INFO:sleap.nn.callbacks:Progress reporter publishing on: tcp://127.0.0.1:9001 for: not_set INFO:sleap.nn.training: ZMQ progress reporter publish on: tcp://127.0.0.1:9001 INFO:sleap.nn.training:Created run path: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103 INFO:sleap.nn.training:Setting up visualization... 2024-08-31 10:40:09.211851: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:40:09.239146: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:40:09.252665: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -34 } dim { size: -35 } dim { size: -36 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: -37 } dim { size: -38 } dim { size: 1 } } } 2024-08-31 10:40:09.730678: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:40:09.758446: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:40:09.771833: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -34 } dim { size: -35 } dim { size: -36 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: -37 } dim { size: -38 } dim { size: 1 } } } INFO:sleap.nn.training:Finished trainer set up. [2.6s] INFO:sleap.nn.training:Creating tf.data.Datasets for training data generation... INFO:sleap.nn.training:Finished creating training datasets. [4.0s] INFO:sleap.nn.training:Starting training loop... Epoch 1/2 2024-08-31 10:40:14.150629: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:40:50.149551: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 200/200 - 38s - loss: 2.7716e-04 - val_loss: 1.5770e-04 - lr: 1.0000e-04 - 38s/epoch - 191ms/step Epoch 2/2 Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/viz/validation.*.png 200/200 - 36s - loss: 9.0670e-05 - val_loss: 4.4644e-05 - lr: 1.0000e-04 - 36s/epoch - 181ms/step INFO:sleap.nn.training:Finished training loop. [1.2 min] INFO:sleap.nn.training:Deleting visualization directory: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/viz INFO:sleap.nn.training:Saving evaluation metrics to model folder... Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0% ETA: -:--:-- ?Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/viz/validation.*.png 2024-08-31 10:41:29.785486: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:41:29.898676: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -43 } dim { size: -44 } dim { size: -45 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -46 } dim { size: -47 } dim { size: 1 } } } 2024-08-31 10:41:29.898854: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: 4 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -55 } dim { size: -56 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 99% ETA: 0:00:01 35.1 FPS2024-08-31 10:41:33.282831: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:41:33.395526: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -56 } dim { size: -57 } dim { size: -58 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -59 } dim { size: -60 } dim { size: 1 } } } 2024-08-31 10:41:33.395803: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: -18 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -68 } dim { size: -69 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 25.5 FPS INFO:sleap.nn.evals:Saved predictions: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/labels_pr.train.slp INFO:sleap.nn.evals:Saved metrics: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/metrics.train.npz INFO:sleap.nn.evals:OKS mAP: 0.980089 Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0% ETA: -:--:-- ?2024-08-31 10:41:34.744262: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:41:34.856012: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -43 } dim { size: -44 } dim { size: -45 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -46 } dim { size: -47 } dim { size: 1 } } } 2024-08-31 10:41:34.856193: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: 4 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -55 } dim { size: -56 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━ 80% ETA: 0:00:01 47.6 FPS2024-08-31 10:41:36.014392: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:41:36.124409: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -56 } dim { size: -57 } dim { size: -58 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -59 } dim { size: -60 } dim { size: 1 } } } 2024-08-31 10:41:36.124641: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: -18 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -9 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -9 } dim { size: -68 } dim { size: -69 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 4.8 FPS INFO:sleap.nn.evals:Saved predictions: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/labels_pr.val.slp INFO:sleap.nn.evals:Saved metrics: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/metrics.val.npz INFO:sleap.nn.evals:OKS mAP: 1.000000 INFO:sleap.nn.callbacks:Closing the reporter controller/context. INFO:sleap.nn.callbacks:Closing the training controller socket/context. Run Path: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103 Finished training centroid. Resetting monitor window. Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/viz/validation.*.png Start training centered_instance... ['sleap-train', '/var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpgxv9utkl/240831_104137_training_job.json', '/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp', '--zmq', '--save_viz'] INFO:sleap.nn.training:Versions: SLEAP: 1.3.4 TensorFlow: 2.9.2 Numpy: 1.22.4 Python: 3.9.15 OS: macOS-13.5-arm64-arm-64bit INFO:sleap.nn.training:Training labels file: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Training profile: /var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpgxv9utkl/240831_104137_training_job.json INFO:sleap.nn.training: INFO:sleap.nn.training:Arguments: INFO:sleap.nn.training:{ "training_job_path": "/var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpgxv9utkl/240831_104137_training_job.json", "labels_path": "/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp", "video_paths": [ "" ], "val_labels": null, "test_labels": null, "base_checkpoint": null, "tensorboard": false, "save_viz": true, "zmq": true, "run_name": "", "prefix": "", "suffix": "", "cpu": false, "first_gpu": false, "last_gpu": false, "gpu": "auto" } INFO:sleap.nn.training: INFO:sleap.nn.training:Training job: INFO:sleap.nn.training:{ "data": { "labels": { "training_labels": "/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 6, 82, 95, 24, 68, 92, 64, 30, 7, 87, 19, 100, 73, 23, 96, 13, 42, 58, 86, 54, 28, 79, 34, 81, 93, 27, 49, 1, 51, 74, 91, 60, 31, 46, 77, 75, 98, 78, 10, 63, 45, 32, 29, 16, 84, 71, 36, 48, 39, 0, 88, 4, 25, 12, 44, 50, 5, 69, 97, 101, 102, 33, 80, 89, 70, 55, 85, 38, 76, 59, 62, 40, 99, 11, 94, 90, 15, 53, 2, 21, 18, 72, 83, 3, 57, 41, 66, 52, 9, 20, 35, 65, 14 ], "validation_inds": [ 61, 43, 26, 67, 47, 56, 17, 22, 8, 37 ], "test_inds": null, "search_path_hints": [ "", "", "", "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 1.0, "pad_to_stride": 1, "resize_and_pad_to_target": true, "target_height": 1024, "target_width": 1024 }, "instance_cropping": { "center_on_part": "thorax", "crop_size": 144, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 16, "output_stride": 4, "filters": 24, "filters_rate": 2.0, "middle_block": true, "up_interpolate": true, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": null, "centered_instance": { "anchor_part": "thorax", "part_names": [ "head", "thorax", "abdomen", "wingL", "wingR", "forelegL4", "forelegR4", "midlegL4", "midlegR4", "hindlegL4", "hindlegR4", "eyeL", "eyeR" ], "sigma": 2.5, "output_stride": 4, "loss_weight": 1.0, "offset_refinement": false }, "multi_instance": null, "multi_class_bottomup": null, "multi_class_topdown": null }, "base_checkpoint": null }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": true, "rotation_min_angle": -180.0, "rotation_max_angle": 180.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 4, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 2, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-08, "plateau_patience": 10 } }, "outputs": { "save_outputs": true, "run_name": "240831_104137.centered_instance.n=103", "run_name_prefix": "", "run_name_suffix": "", "runs_folder": "/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.4.1a2", "filename": "/var/folders/64/rjln6zpx7tlgwf8cqgvhm7fr0000gn/T/tmpgxv9utkl/240831_104137_training_job.json" } INFO:sleap.nn.training: INFO:sleap.nn.training:Failed to query GPU memory from nvidia-smi. Defaulting to first GPU. INFO:sleap.nn.training:Using GPU 0 for acceleration. INFO:sleap.nn.training:Disabled GPU memory pre-allocation. INFO:sleap.nn.training:System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initalized: False Memory growth: True INFO:sleap.nn.training: INFO:sleap.nn.training:Initializing trainer... INFO:sleap.nn.training:Loading training labels from: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp INFO:sleap.nn.training:Creating training and validation splits from validation fraction: 0.1 INFO:sleap.nn.training: Splits: Training = 93 / Validation = 10. INFO:sleap.nn.training:Setting up for training... INFO:sleap.nn.training:Setting up pipeline builders... INFO:sleap.nn.training:Setting up model... INFO:sleap.nn.training:Building test pipeline... Metal device set to: Apple M2 Pro systemMemory: 16.00 GB maxCacheSize: 5.33 GB 2024-08-31 10:41:42.512151: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support. 2024-08-31 10:41:42.512299: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) 2024-08-31 10:41:42.781321: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz 2024-08-31 10:41:43.568742: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } INFO:sleap.nn.training:Loaded test example. [1.192s] INFO:sleap.nn.training: Input shape: (144, 144, 1) INFO:sleap.nn.training:Created Keras model. INFO:sleap.nn.training: Backbone: UNet(stacks=1, filters=24, filters_rate=2.0, kernel_size=3, stem_kernel_size=7, convs_per_block=2, stem_blocks=0, down_blocks=4, middle_block=True, up_blocks=2, up_interpolate=True, block_contraction=False) INFO:sleap.nn.training: Max stride: 16 INFO:sleap.nn.training: Parameters: 4,311,445 INFO:sleap.nn.training: Heads: INFO:sleap.nn.training: [0] = CenteredInstanceConfmapsHead(part_names=['head', 'thorax', 'abdomen', 'wingL', 'wingR', 'forelegL4', 'forelegR4', 'midlegL4', 'midlegR4', 'hindlegL4', 'hindlegR4', 'eyeL', 'eyeR'], anchor_part='thorax', sigma=2.5, output_stride=4, loss_weight=1.0) INFO:sleap.nn.training: Outputs: INFO:sleap.nn.training: [0] = KerasTensor(type_spec=TensorSpec(shape=(None, 36, 36, 13), dtype=tf.float32, name=None), name='CenteredInstanceConfmapsHead/BiasAdd:0', description="created by layer 'CenteredInstanceConfmapsHead'") INFO:sleap.nn.training:Training from scratch INFO:sleap.nn.training:Setting up data pipelines... INFO:sleap.nn.training:Training set: n = 93 INFO:sleap.nn.training:Validation set: n = 10 INFO:sleap.nn.training:Setting up optimization... INFO:sleap.nn.training: Learning rate schedule: LearningRateScheduleConfig(reduce_on_plateau=True, reduction_factor=0.5, plateau_min_delta=1e-06, plateau_patience=5, plateau_cooldown=3, min_learning_rate=1e-08) INFO:sleap.nn.training: Early stopping: EarlyStoppingConfig(stop_training_on_plateau=True, plateau_min_delta=1e-08, plateau_patience=10) INFO:sleap.nn.training:Setting up outputs... INFO:sleap.nn.callbacks:Training controller subscribed to: tcp://127.0.0.1:9000 (topic: ) INFO:sleap.nn.training: ZMQ controller subcribed to: tcp://127.0.0.1:9000 INFO:sleap.nn.callbacks:Progress reporter publishing on: tcp://127.0.0.1:9001 for: not_set INFO:sleap.nn.training: ZMQ progress reporter publish on: tcp://127.0.0.1:9001 INFO:sleap.nn.training:Created run path: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103 INFO:sleap.nn.training:Setting up visualization... 2024-08-31 10:41:44.317850: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } 2024-08-31 10:41:44.811632: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } INFO:sleap.nn.training:Finished trainer set up. [2.4s] INFO:sleap.nn.training:Creating tf.data.Datasets for training data generation... 2024-08-31 10:41:48.008680: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } 2024-08-31 10:41:49.108974: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } INFO:sleap.nn.training:Finished creating training datasets. [4.4s] INFO:sleap.nn.training:Starting training loop... 2024-08-31 10:41:49.349177: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } Epoch 1/2 2024-08-31 10:41:49.820443: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:01.214235: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } 2024-08-31 10:42:01.392528: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:02.320142: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:02.327786: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 13 } dim { size: 36 } dim { size: 36 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: -5 } dim { size: -6 } dim { size: 1 } } } 200/200 - 14s - loss: 0.0111 - head: 0.0076 - thorax: 0.0065 - abdomen: 0.0115 - wingL: 0.0127 - wingR: 0.0129 - forelegL4: 0.0112 - forelegR4: 0.0110 - midlegL4: 0.0133 - midlegR4: 0.0133 - hindlegL4: 0.0132 - hindlegR4: 0.0132 - eyeL: 0.0090 - eyeR: 0.0092 - val_loss: 0.0090 - val_head: 0.0035 - val_thorax: 0.0045 - val_abdomen: 0.0082 - val_wingL: 0.0098 - val_wingR: 0.0100 - val_forelegL4: 0.0106 - val_forelegR4: 0.0088 - val_midlegL4: 0.0122 - val_midlegR4: 0.0123 - val_hindlegL4: 0.0126 - val_hindlegR4: 0.0128 - val_eyeL: 0.0055 - val_eyeR: 0.0059 - lr: 1.0000e-04 - 14s/epoch - 68ms/step Epoch 2/2 Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/viz/validation.*.png Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/viz/validation.*.png 2024-08-31 10:42:13.946977: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: 1 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 144 } dim { size: 144 } dim { size: 1 } } } 200/200 - 12s - loss: 0.0074 - head: 0.0025 - thorax: 0.0032 - abdomen: 0.0063 - wingL: 0.0072 - wingR: 0.0082 - forelegL4: 0.0086 - forelegR4: 0.0085 - midlegL4: 0.0110 - midlegR4: 0.0109 - hindlegL4: 0.0116 - hindlegR4: 0.0115 - eyeL: 0.0034 - eyeR: 0.0035 - val_loss: 0.0061 - val_head: 0.0017 - val_thorax: 0.0021 - val_abdomen: 0.0054 - val_wingL: 0.0060 - val_wingR: 0.0069 - val_forelegL4: 0.0074 - val_forelegR4: 0.0066 - val_midlegL4: 0.0092 - val_midlegR4: 0.0094 - val_hindlegL4: 0.0098 - val_hindlegR4: 0.0101 - val_eyeL: 0.0024 - val_eyeR: 0.0022 - lr: 1.0000e-04 - 12s/epoch - 58ms/step Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103/viz/validation.*.png Polling: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/viz/validation.*.png INFO:sleap.nn.training:Finished training loop. [0.4 min] INFO:sleap.nn.training:Deleting visualization directory: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/viz INFO:sleap.nn.training:Saving evaluation metrics to model folder... Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0% ETA: -:--:-- ?2024-08-31 10:42:15.583669: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:15.644206: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: 4 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: -25 } dim { size: -26 } dim { size: 1 } } } 2024-08-31 10:42:15.649281: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -42 } dim { size: -43 } dim { size: -44 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -10 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: -46 } dim { size: -47 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 99% ETA: 0:00:01 39.8 FPS2024-08-31 10:42:18.510483: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:18.570343: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: -13 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: -39 } dim { size: -40 } dim { size: 1 } } } 2024-08-31 10:42:18.574968: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -57 } dim { size: -58 } dim { size: -59 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -10 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: -61 } dim { size: -62 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 31.9 FPS INFO:sleap.nn.evals:Saved predictions: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/labels_pr.train.slp INFO:sleap.nn.evals:Saved metrics: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/metrics.train.npz INFO:sleap.nn.evals:OKS mAP: 0.003687 Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0% ETA: -:--:-- ?2024-08-31 10:42:19.595013: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:19.653563: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: 4 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: -25 } dim { size: -26 } dim { size: 1 } } } 2024-08-31 10:42:19.658071: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -42 } dim { size: -43 } dim { size: -44 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -10 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: -46 } dim { size: -47 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━ 80% ETA: 0:00:01 52.0 FPS2024-08-31 10:42:20.233551: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:20.298026: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: -13 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: -39 } dim { size: -40 } dim { size: 1 } } } 2024-08-31 10:42:20.303196: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -57 } dim { size: -58 } dim { size: -59 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -10 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -10 } dim { size: -61 } dim { size: -62 } dim { size: 1 } } } Predicting... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% ETA: 0:00:00 9.0 FPS INFO:sleap.nn.evals:Saved predictions: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/labels_pr.val.slp INFO:sleap.nn.evals:Saved metrics: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103/metrics.val.npz INFO:sleap.nn.evals:OKS mAP: 0.025248 INFO:sleap.nn.callbacks:Closing the reporter controller/context. INFO:sleap.nn.callbacks:Closing the training controller socket/context. Run Path: /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103 Finished training centered_instance. Command line call: sleap-track /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp --only-suggested-frames -m /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103 -m /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103 -o /Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/predictions/courtship_labels.slp.240831_104221.predictions.slp --verbosity json --no-empty-frames Started inference at: 2024-08-31 10:42:25.700490 Args: { │ 'data_path': '/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/courtship_labels.slp', │ 'models': [ │ │ '/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104002.centroid.n=103', │ │ '/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/models/240831_104137.centered_instance.n=103' │ ], │ 'frames': '', │ 'only_labeled_frames': False, │ 'only_suggested_frames': True, │ 'output': '/Users/liezlmaree/Projects/sleap-datasets/drosophila-melanogaster-courtship/predictions/courtship_labels.slp.240831_104221.predictions.slp', 2024-08-31 10:42:26.318598: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support. 2024-08-31 10:42:26.318737: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) │ 'no_empty_frames': True, │ 'verbosity': 'json', │ 'video.dataset': None, │ 'video.input_format': 'channels_last', │ 'video.index': '', │ 'cpu': False, │ 'first_gpu': False, │ 'last_gpu': False, │ 'gpu': 'auto', │ 'max_edge_length_ratio': 0.25, │ 'dist_penalty_weight': 1.0, │ 'batch_size': 4, │ 'open_in_gui': False, │ 'peak_threshold': 0.2, │ 'max_instances': None, │ 'tracking.tracker': None, │ 'tracking.max_tracking': None, │ 'tracking.max_tracks': None, │ 'tracking.target_instance_count': None, │ 'tracking.pre_cull_to_target': None, 2024-08-31 10:42:27.299442: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz │ 'tracking.pre_cull_iou_threshold': None, │ 'tracking.post_connect_single_breaks': None, │ 'tracking.clean_instance_count': None, │ 'tracking.clean_iou_threshold': None, │ 'tracking.similarity': None, │ 'tracking.match': None, │ 'tracking.robust': None, │ 'tracking.track_window': None, │ 'tracking.min_new_track_points': None, │ 'tracking.min_match_points': None, │ 'tracking.img_scale': None, │ 'tracking.of_window_size': None, │ 'tracking.of_max_levels': None, │ 'tracking.save_shifted_instances': None, │ 'tracking.kf_node_indices': None, │ 'tracking.kf_init_frame_count': None } INFO:sleap.nn.inference:Failed to query GPU memory from nvidia-smi. Defaulting to first GPU. Metal device set to: Apple M2 Pro 2024-08-31 10:42:29.162865: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 2024-08-31 10:42:29.221760: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -45 } dim { size: -46 } dim { size: -47 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -15 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -15 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -15 } dim { size: -48 } dim { size: -49 } dim { size: 1 } } } 2024-08-31 10:42:29.221963: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_UINT8 } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_UINT8 shape { dim { size: 4 } dim { size: 1024 } dim { size: 1024 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -15 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -15 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -15 } dim { size: -56 } dim { size: -57 } dim { size: 1 } } } 2024-08-31 10:42:29.224345: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -91 } dim { size: -92 } dim { size: -93 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -20 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -20 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } } device { type: "CPU" model: "0" num_cores: 10 environment { key: "cpu_instruction_set" value: "ARM NEON" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 16384 l2_cache_size: 524288 l3_cache_size: 524288 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -20 } dim { size: -95 } dim { size: -96 } dim { size: 1 } } } Versions: SLEAP: 1.3.4 TensorFlow: 2.9.2 Numpy: 1.22.4 Python: 3.9.15 OS: macOS-13.5-arm64-arm-64bit System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initalized: False Memory growth: True Process return code: 0 ```
sleap-label ![image](https://github.com/user-attachments/assets/4c6b0f64-ee0e-4beb-8aef-a10dd890fa15) ```bash (sleap_1.3) liezlmaree:~$sleap-label Saving config: /Users/liezlmaree/.sleap/1.3.4/preferences.yaml Restoring GUI state... Software versions: SLEAP: 1.3.4 TensorFlow: 2.9.2 Numpy: 1.22.4 Python: 3.9.15 OS: macOS-13.5-arm64-arm-64bit Happy SLEAPing! :) ```
mm create sleap ```bash liezlmaree:~$mm create -y -n sleap_1.3.4 -c conda-forge -c nvidia -c sleap/label/dev -c sleap -c anaconda sleap=1.3.4 nvidia/noarch (check zst) Checked 0.2s nvidia/osx-arm64 (check zst) Checked 0.3s sleap/osx-arm64 (check zst) Checked 1.0s sleap/label/dev/osx-arm64 (check zst) Checked 1.1s sleap/noarch (check zst) Checked 2.0s sleap/label/dev/noarch (check zst) Checked 2.8s nvidia/osx-arm64 No change nvidia/noarch 14.7kB @ 123.3kB/s 0.1s sleap/osx-arm64 No change sleap/label/dev/noarch 116.0 B @ 215.0 B/s 0.4s sleap/label/dev/osx-arm64 962.0 B @ 1.3kB/s 0.7s anaconda/noarch No change sleap/noarch No change anaconda/osx-arm64 No change conda-forge/osx-arm64 11.4MB @ 788.8kB/s 14.5s conda-forge/noarch 16.2MB @ 1.1MB/s 14.7s Transaction Prefix: /Users/liezlmaree/micromamba/envs/sleap_1.3.4 Updating specs: - sleap=1.3.4 warning libmamba Invalid package cache, file '/Users/liezlmaree/micromamba/pkgs/pyside2-5.15.8-py39h0adaba8_2/lib/python3.9/site-packages/shiboken2/files.dir/shibokensupport/signature/mapping.py' has incorrect size warning libmamba Extracted package cache '/Users/liezlmaree/micromamba/pkgs/sleap-1.3.4-py39_0' has invalid size warning libmamba Extracted package cache '/Users/liezlmaree/micromamba/pkgs/sleap-1.3.4-py39_0' has invalid SHA-256 checksum Package Version Build Channel Size ───────────────────────────────────────────────────────────────────────────────────────────────── Install: ───────────────────────────────────────────────────────────────────────────────────────────────── + bzip2 1.0.8 h99b78c6_7 conda-forge Cached + libffi 3.4.2 h3422bc3_5 conda-forge Cached + libzlib 1.3.1 hfb2fe0b_1 conda-forge Cached + libcxx 18.1.8 h3ed4263_6 conda-forge Cached + python_abi 3.9 5_cp39 conda-forge Cached + giflib 5.2.2 h93a5062_0 conda-forge Cached + jpeg 9e h1a8c8d9_3 conda-forge Cached + ncurses 6.5 h7bae524_1 conda-forge Cached + xz 5.2.6 h57fd34a_0 conda-forge Cached + ca-certificates 2024.8.30 hf0a4a13_0 conda-forge Cached + libdeflate 1.14 h1a8c8d9_0 conda-forge Cached + libwebp-base 1.4.0 h93a5062_0 conda-forge Cached + c-ares 1.33.1 hd74edd7_0 conda-forge Cached + libiconv 1.17 h0d3ecfb_2 conda-forge Cached + llvm-openmp 18.1.8 hde57baf_1 conda-forge Cached + libev 4.33 h93a5062_2 conda-forge Cached + libexpat 2.6.2 hebf3989_0 conda-forge Cached + nettle 3.9.1 h40ed0f5_0 conda-forge Cached + lame 3.100 h1a8c8d9_1003 conda-forge Cached + x264 1!164.3095 h57fd34a_2 conda-forge Cached + xorg-libxdmcp 1.1.3 h27ca646_0 conda-forge Cached + libtasn1 4.19.0 h1a8c8d9_0 conda-forge Cached + pthread-stubs 0.4 h27ca646_1001 conda-forge Cached + xorg-libxau 1.0.11 hb547adb_0 conda-forge Cached + libsodium 1.0.18 h27ca646_1 conda-forge Cached + yaml 0.2.5 h3422bc3_2 conda-forge Cached + libogg 1.3.5 h99b78c6_0 conda-forge Cached + libopus 1.3.1 h27ca646_1 conda-forge Cached + libbrotlicommon 1.1.0 hb547adb_1 conda-forge Cached + libunistring 0.9.10 h3422bc3_0 conda-forge Cached + pcre2 10.44 h297a79d_2 conda-forge Cached + zstd 1.5.6 hb46c0d2_0 conda-forge Cached + tk 8.6.13 h5083fa2_1 conda-forge Cached + libpng 1.6.43 h091b4b1_0 conda-forge Cached + libsqlite 3.46.0 hfb93653_0 conda-forge Cached + libasprintf 0.22.5 h8414b35_3 conda-forge Cached + libllvm14 14.0.6 hd1a9a77_4 conda-forge Cached + nspr 4.35 hb7217d7_0 conda-forge Cached + geos 3.12.2 h00cdb27_1 conda-forge Cached + x265 3.5 hbc6ce65_3 conda-forge Cached + openh264 2.3.1 hb7217d7_2 conda-forge Cached + libvpx 1.11.0 hc470f4d_3 conda-forge Cached + gmp 6.3.0 h7bae524_2 conda-forge Cached + libaec 1.1.3 hebf3989_0 conda-forge Cached + pixman 0.43.4 hebf3989_0 conda-forge Cached + re2 2022.06.01 h9a09cb3_1 conda-forge Cached + graphite2 1.3.13 hebf3989_1003 conda-forge Cached + lerc 4.0.0 h9a09cb3_0 conda-forge Cached + svt-av1 1.4.1 h7ea286d_0 conda-forge Cached + aom 3.5.0 h7ea286d_0 conda-forge Cached + snappy 1.1.10 hd04f947_1 conda-forge Cached + libprotobuf 3.20.3 hb5ab8b9_0 conda-forge Cached + libabseil 20211102.0 cxx17_h28b99d4_3 conda-forge Cached + icu 70.1 h6b3803e_0 conda-forge Cached + jasper 2.0.33 hc3cd1e9_1 conda-forge Cached + libedit 3.1.20191231 hc8eb9b7_2 conda-forge Cached + readline 8.2 h92ec313_1 conda-forge Cached + openssl 1.1.1w h53f4e23_0 conda-forge Cached + libintl 0.22.5 h8414b35_3 conda-forge Cached + libgfortran5 13.2.0 hf226fd6_3 conda-forge Cached + expat 2.6.2 hebf3989_0 conda-forge Cached + p11-kit 0.24.1 h29577a5_0 conda-forge Cached + libxcb 1.13 h9b22ae9_1004 conda-forge Cached + zeromq 4.3.5 hebf3989_1 conda-forge Cached + libvorbis 1.3.7 h9f76cd9_0 conda-forge Cached + libbrotlienc 1.1.0 hb547adb_1 conda-forge Cached + libbrotlidec 1.1.0 hb547adb_1 conda-forge Cached + freetype 2.12.1 hadb7bae_2 conda-forge Cached + libasprintf-devel 0.22.5 h8414b35_3 conda-forge Cached + libclang13 14.0.6 default_hc7183e1_1 conda-forge Cached + nss 3.104 hd1ce637_0 conda-forge 2MB + libtiff 4.4.0 heb92581_5 conda-forge Cached + abseil-cpp 20211102.0 he4e09e4_3 conda-forge Cached + libxml2 2.10.3 h67585b2_4 conda-forge Cached + sqlite 3.46.0 h5838104_0 conda-forge Cached + mysql-common 8.0.32 hab468bb_0 conda-forge Cached + krb5 1.20.1 h127bd45_0 conda-forge Cached + libssh2 1.10.0 hb80f160_3 conda-forge Cached + libnghttp2 1.51.0 hd184df1_0 conda-forge Cached + libgettextpo 0.22.5 h8414b35_3 conda-forge Cached + gettext-tools 0.22.5 h8414b35_3 conda-forge Cached + libintl-devel 0.22.5 h8414b35_3 conda-forge Cached + libglib 2.80.3 h59d46d9_2 conda-forge Cached + libgfortran 5.0.0 13_2_0_hd922786_3 conda-forge Cached + brotli-bin 1.1.0 hb547adb_1 conda-forge Cached + fontconfig 2.14.2 h82840c6_0 conda-forge Cached + libclang 14.0.6 default_h5dc8d65_1 conda-forge Cached + lcms2 2.14 h8193b64_0 conda-forge Cached + openjpeg 2.5.0 h5d4e404_1 conda-forge Cached + grpc-cpp 1.46.3 hacd037c_3 conda-forge Cached + libxslt 1.1.37 h1bd8bc4_0 conda-forge Cached + mysql-libs 8.0.32 hea58576_0 conda-forge Cached + libpq 15.1 hbce9e56_3 conda-forge Cached + libcurl 7.87.0 hbe9bab4_0 conda-forge Cached + libgettextpo-devel 0.22.5 h8414b35_3 conda-forge Cached + glib-tools 2.80.3 h8ba3eef_2 conda-forge Cached + fftw 3.3.10 nompi_h6637ab6_110 conda-forge Cached + libopenblas 0.3.27 openmp_h517c56d_1 conda-forge Cached + brotli 1.1.0 hb547adb_1 conda-forge Cached + hdf5 1.12.2 nompi_h55deafc_101 conda-forge Cached + gettext 0.22.5 h8414b35_3 conda-forge Cached + openblas 0.3.27 openmp_h560b219_1 conda-forge Cached + libblas 3.9.0 23_osxarm64_openblas conda-forge Cached + libidn2 2.3.7 h93a5062_0 conda-forge Cached + libcblas 3.9.0 23_osxarm64_openblas conda-forge Cached + liblapack 3.9.0 23_osxarm64_openblas conda-forge Cached + gnutls 3.7.9 hd26332c_0 conda-forge Cached + liblapacke 3.9.0 23_osxarm64_openblas conda-forge Cached + blas-devel 3.9.0 23_osxarm64_openblas conda-forge Cached + blas 2.123 openblas conda-forge Cached + tzdata 2024a h8827d51_1 conda-forge Cached + font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge Cached + font-ttf-inconsolata 3.000 h77eed37_0 conda-forge Cached + font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge Cached + font-ttf-ubuntu 0.83 h77eed37_2 conda-forge Cached + fonts-conda-forge 1 0 conda-forge Cached + fonts-conda-ecosystem 1 0 conda-forge Cached + python 3.9.15 h2d96c93_0_cpython conda-forge Cached + cairo 1.16.0 had492bb_1012 conda-forge Cached + ffmpeg 4.4.2 gpl_hf318d42_112 conda-forge Cached + harfbuzz 5.3.0 hddbc195_0 conda-forge Cached + wheel 0.44.0 pyhd8ed1ab_0 conda-forge Cached + setuptools 72.2.0 pyhd8ed1ab_0 conda-forge Cached + pip 24.2 pyh8b19718_1 conda-forge Cached + hyperframe 6.0.1 pyhd8ed1ab_0 conda-forge Cached + hpack 4.0.0 pyh9f0ad1d_0 conda-forge Cached + locket 1.0.0 pyhd8ed1ab_0 conda-forge Cached + pysocks 1.7.1 pyha2e5f31_6 conda-forge Cached + aiohappyeyeballs 2.4.0 pyhd8ed1ab_0 conda-forge Cached + pycparser 2.22 pyhd8ed1ab_0 conda-forge Cached + pyjwt 2.9.0 pyhd8ed1ab_1 conda-forge Cached + blinker 1.8.2 pyhd8ed1ab_0 conda-forge Cached + pyasn1 0.6.0 pyhd8ed1ab_0 conda-forge Cached + fsspec 2024.6.1 pyhff2d567_0 conda-forge Cached + cachetools 5.5.0 pyhd8ed1ab_0 conda-forge Cached + zipp 3.20.1 pyhd8ed1ab_0 conda-forge Cached + idna 3.8 pyhd8ed1ab_0 conda-forge Cached + charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge Cached + toolz 0.12.1 pyhd8ed1ab_0 conda-forge Cached + cloudpickle 3.0.0 pyhd8ed1ab_0 conda-forge Cached + threadpoolctl 3.5.0 pyhc1e730c_0 conda-forge Cached + joblib 1.4.2 pyhd8ed1ab_0 conda-forge Cached + munkres 1.1.4 pyh9f0ad1d_0 conda-forge Cached + pyparsing 3.1.4 pyhd8ed1ab_0 conda-forge Cached + cycler 0.12.1 pyhd8ed1ab_0 conda-forge Cached + certifi 2024.7.4 pyhd8ed1ab_0 conda-forge Cached + click 8.1.7 unix_pyh707e725_0 conda-forge Cached + tensorboard-plugin-wit 1.8.1 pyhd8ed1ab_0 conda-forge Cached + mdurl 0.1.2 pyhd8ed1ab_0 conda-forge Cached + pygments 2.18.0 pyhd8ed1ab_0 conda-forge Cached + networkx 3.2 pyhd8ed1ab_0 conda-forge Cached + jsonpickle 1.2 py_0 conda-forge Cached + jsmin 3.0.1 pyhd8ed1ab_0 conda-forge Cached + attrs 22.1.0 pyh71513ae_1 conda-forge Cached + pytz 2024.1 pyhd8ed1ab_0 conda-forge Cached + python-tzdata 2024.1 pyhd8ed1ab_0 conda-forge Cached + cached_property 1.5.2 pyha770c72_1 conda-forge Cached + typing_extensions 4.12.2 pyha770c72_0 conda-forge Cached + termcolor 2.4.0 pyhd8ed1ab_0 conda-forge Cached + six 1.16.0 pyh6c4a22f_0 conda-forge Cached + python-flatbuffers 1.12 pyhd8ed1ab_1 conda-forge Cached + packaging 24.1 pyhd8ed1ab_0 conda-forge Cached + gast 0.4.0 pyh9f0ad1d_0 conda-forge Cached + absl-py 2.1.0 pyhd8ed1ab_0 conda-forge Cached + keras 2.9.0 pyhd8ed1ab_0 conda-forge Cached + h2 4.1.0 pyhd8ed1ab_0 conda-forge Cached + rsa 4.9 pyhd8ed1ab_0 conda-forge Cached + pyasn1-modules 0.4.0 pyhd8ed1ab_0 conda-forge Cached + importlib-metadata 8.4.0 pyha770c72_0 conda-forge Cached + importlib_resources 6.4.4 pyhd8ed1ab_0 conda-forge Cached + partd 1.4.2 pyhd8ed1ab_0 conda-forge Cached + markdown-it-py 3.0.0 pyhd8ed1ab_0 conda-forge Cached + cattrs 1.1.1 pyhd8ed1ab_0 conda-forge Cached + cached-property 1.5.2 hd8ed1ab_1 conda-forge Cached + typing-extensions 4.12.2 hd8ed1ab_0 conda-forge Cached + pyu2f 0.1.5 pyhd8ed1ab_0 conda-forge Cached + python-dateutil 2.9.0 pyhd8ed1ab_0 conda-forge Cached + google-pasta 0.2.0 pyhd8ed1ab_1 conda-forge Cached + astunparse 1.6.3 pyhd8ed1ab_0 conda-forge Cached + qtpy 2.4.1 pyhd8ed1ab_0 conda-forge Cached + importlib_metadata 8.4.0 hd8ed1ab_0 conda-forge Cached + markdown 3.6 pyhd8ed1ab_0 conda-forge Cached + importlib-resources 6.4.4 pyhd8ed1ab_0 conda-forge Cached + rich 13.7.1 pyhd8ed1ab_0 conda-forge Cached + async-timeout 4.0.3 pyhd8ed1ab_0 conda-forge Cached + brotli-python 1.1.0 py39hb198ff7_1 conda-forge Cached + multidict 6.0.5 py39h02fc5c5_0 conda-forge Cached + frozenlist 1.4.1 py39h17cfd9d_0 conda-forge Cached + markupsafe 2.1.5 py39h06df861_1 conda-forge Cached + unicodedata2 15.1.0 py39h0f82c59_0 conda-forge Cached + kiwisolver 1.4.5 py39h157d57c_2 conda-forge Cached + tensorboard-data-server 0.6.1 py39haa0b8cc_4 conda-forge Cached + pyzmq 26.2.0 py39h6f9cb01_0 conda-forge Cached + pyyaml 6.0.2 py39hfea33bf_0 conda-forge Cached + python-rapidjson 1.20 py39hbf7db11_0 conda-forge Cached + psutil 6.0.0 py39hfea33bf_0 conda-forge Cached + pillow 9.2.0 py39h139752e_3 conda-forge Cached + wrapt 1.16.0 py39h06df861_1 conda-forge Cached + numpy 1.22.4 py39h7df2422_0 conda-forge Cached + cffi 1.17.0 py39h7f933ea_1 conda-forge Cached + cytoolz 0.12.3 py39h17cfd9d_0 conda-forge Cached + protobuf 3.20.3 py39h23fbdae_1 conda-forge Cached + grpcio 1.46.3 py39he581682_3 conda-forge Cached + glib 2.80.3 h59d46d9_2 conda-forge Cached + yarl 1.9.6 py39h06df861_0 conda-forge 108kB + fonttools 4.53.1 py39hfea33bf_0 conda-forge Cached + imagecodecs-lite 2019.12.3 py39h161d348_8 conda-forge Cached + pywavelets 1.6.0 py39h161d348_0 conda-forge Cached + contourpy 1.2.1 py39h48c5dd5_0 conda-forge Cached + shapely 2.0.6 py39h2abb8a4_0 conda-forge Cached + pandas 2.2.2 py39h998126f_1 conda-forge Cached + h5py 3.8.0 nompi_py39hc9149d8_100 conda-forge Cached + libopencv 4.6.0 py39he1c1adf_3 conda-forge Cached + zstandard 0.22.0 py39h0b77d07_1 conda-forge Cached + cryptography 39.0.0 py39haa0b8cc_0 conda-forge Cached + gstreamer 1.22.9 h551c6ff_1 conda-forge Cached + matplotlib-base 3.8.4 py39h15359f4_2 conda-forge Cached + py-opencv 4.6.0 py39hfa6204d_3 conda-forge Cached + gst-plugins-base 1.22.9 h09b4b5e_1 conda-forge Cached + opencv 4.6.0 py39hdf13c20_3 conda-forge Cached + qt-main 5.15.8 hfe8d25c_6 conda-forge Cached + pyside2 5.15.8 py39h0adaba8_2 conda-forge Cached + aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge Cached + werkzeug 3.0.4 pyhd8ed1ab_0 conda-forge Cached + dask-core 2024.8.0 pyhd8ed1ab_0 conda-forge Cached + patsy 0.5.6 pyhd8ed1ab_0 conda-forge Cached + imageio 2.35.1 pyh12aca89_0 conda-forge Cached + opt_einsum 3.3.0 pyhc1e730c_2 conda-forge Cached + tifffile 2020.6.3 py_0 conda-forge Cached + urllib3 2.2.2 pyhd8ed1ab_1 conda-forge Cached + pyopenssl 23.2.0 pyhd8ed1ab_1 conda-forge Cached + oauthlib 3.2.2 pyhd8ed1ab_0 conda-forge Cached + requests 2.32.3 pyhd8ed1ab_0 conda-forge Cached + requests-oauthlib 2.0.0 pyhd8ed1ab_0 conda-forge Cached + scipy 1.7.3 py39haa152ba_2 anaconda Cached + aiohttp 3.10.5 py39hfea33bf_0 conda-forge Cached + statsmodels 0.14.1 py39h373d45f_0 conda-forge Cached + scikit-learn 1.0 py39h12ba089_1 conda-forge Cached + scikit-image 0.19.3 py39hde7b980_2 conda-forge Cached + seaborn-base 0.13.2 pyhd8ed1ab_2 conda-forge Cached + pykalman 0.9.7 pyhd8ed1ab_0 conda-forge Cached + keras-preprocessing 1.1.2 pyhd8ed1ab_0 conda-forge Cached + scikit-video 1.1.11 pyh24bf2e0_0 conda-forge Cached + google-auth 2.34.0 pyhff2d567_0 conda-forge Cached + imgaug 0.4.0 pyhd8ed1ab_1 conda-forge Cached + seaborn 0.13.2 hd8ed1ab_2 conda-forge Cached + google-auth-oauthlib 0.4.6 pyhd8ed1ab_0 conda-forge Cached + tensorboard 2.9.0 pyhd8ed1ab_0 conda-forge Cached + tensorflow-base 2.9.1 cpu_py39ha1ad4ae_0 conda-forge Cached + tensorflow-estimator 2.9.1 cpu_py39h7b621ec_0 conda-forge Cached + tensorflow 2.9.1 cpu_py39h2839aeb_0 conda-forge Cached + tensorflow-hub 0.12.0 pyhca92ed8_0 conda-forge Cached + sleap 1.3.4 py39_0 sleap/label/dev 240MB Summary: Install: 253 packages Total download: 242MB ```

⚠️ This build is branched off of main. In order to get the build runners working, we needed to make some changes (that were already made in develop). This will cause merge conflicts when merging develop into main. Anything in develop should override all files in main - even the attrs and opencv constraints added here as they will be more officially handled in develop before the next release. ⚠️ These merge conflicts from develop -> main will break the develop runners from running

Perhaps we release from this branch (not main) and delete this branch instead of merging into main? The source code would still be able to be accessed through the tags and the zipped source code in the release.


Types of changes

Does this address any currently open issues?

Outside contributors checklist

Thank you for contributing to SLEAP!

:heart:

coderabbitai[bot] commented 2 months ago

[!IMPORTANT]

Review skipped

Auto reviews are disabled on base/target branches other than the default branch.

Please check the settings in the CodeRabbit UI or the .coderabbit.yaml file in this repository. To trigger a single review, invoke the @coderabbitai review command.

You can disable this status message by setting the reviews.review_status to false in the CodeRabbit configuration file.


Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

Share - [X](https://twitter.com/intent/tweet?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A&url=https%3A//coderabbit.ai) - [Mastodon](https://mastodon.social/share?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A%20https%3A%2F%2Fcoderabbit.ai) - [Reddit](https://www.reddit.com/submit?title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&text=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code.%20Check%20it%20out%3A%20https%3A//coderabbit.ai) - [LinkedIn](https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fcoderabbit.ai&mini=true&title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&summary=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code)
Tips ### Chat There are 3 ways to chat with [CodeRabbit](https://coderabbit.ai): - Review comments: Directly reply to a review comment made by CodeRabbit. Example: - `I pushed a fix in commit .` - `Generate unit testing code for this file.` - `Open a follow-up GitHub issue for this discussion.` - Files and specific lines of code (under the "Files changed" tab): Tag `@coderabbitai` in a new review comment at the desired location with your query. Examples: - `@coderabbitai generate unit testing code for this file.` - `@coderabbitai modularize this function.` - PR comments: Tag `@coderabbitai` in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples: - `@coderabbitai generate interesting stats about this repository and render them as a table.` - `@coderabbitai show all the console.log statements in this repository.` - `@coderabbitai read src/utils.ts and generate unit testing code.` - `@coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.` - `@coderabbitai help me debug CodeRabbit configuration file.` Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments. ### CodeRabbit Commands (Invoked using PR comments) - `@coderabbitai pause` to pause the reviews on a PR. - `@coderabbitai resume` to resume the paused reviews. - `@coderabbitai review` to trigger an incremental review. This is useful when automatic reviews are disabled for the repository. - `@coderabbitai full review` to do a full review from scratch and review all the files again. - `@coderabbitai summary` to regenerate the summary of the PR. - `@coderabbitai resolve` resolve all the CodeRabbit review comments. - `@coderabbitai configuration` to show the current CodeRabbit configuration for the repository. - `@coderabbitai help` to get help. ### Other keywords and placeholders - Add `@coderabbitai ignore` anywhere in the PR description to prevent this PR from being reviewed. - Add `@coderabbitai summary` to generate the high-level summary at a specific location in the PR description. - Add `@coderabbitai` anywhere in the PR title to generate the title automatically. ### CodeRabbit Configuration File (`.coderabbit.yaml`) - You can programmatically configure CodeRabbit by adding a `.coderabbit.yaml` file to the root of your repository. - Please see the [configuration documentation](https://docs.coderabbit.ai/guides/configure-coderabbit) for more information. - If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: `# yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json` ### Documentation and Community - Visit our [Documentation](https://coderabbit.ai/docs) for detailed information on how to use CodeRabbit. - Join our [Discord Community](https://discord.com/invite/GsXnASn26c) to get help, request features, and share feedback. - Follow us on [X/Twitter](https://twitter.com/coderabbitai) for updates and announcements.
codecov[bot] commented 2 months ago

Codecov Report

All modified and coverable lines are covered by tests :white_check_mark:

Project coverage is 73.12%. Comparing base (5d71030) to head (d4cc425). Report is 216 commits behind head on main.

Additional details and impacted files ```diff @@ Coverage Diff @@ ## main #1927 +/- ## ========================================== + Coverage 65.97% 73.12% +7.14% ========================================== Files 127 134 +7 Lines 21378 23963 +2585 ========================================== + Hits 14105 17522 +3417 + Misses 7273 6441 -832 ```

:umbrella: View full report in Codecov by Sentry.
:loudspeaker: Have feedback on the report? Share it here.

roomrys commented 2 months ago

We are not merging this PR into main and will be deleting this branch (after 1.4.2 release). The source code will remain available as an asset in the 1.3.4 release notes and also through the v1.3.4 tag.