Closed GxHam closed 2 months ago
Error when trying to retain network on new video
Run training
Error popup
Software versions: SLEAP: 1.4.1a2 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Windows-10-10.0.22621-SP0
Realised the issue was due to uploading new video in RGB when other videos were Mono. Resolved issue by switching all videos to mono
Bug description
Error when trying to retain network on new video
Expected behaviour
Run training
Actual behaviour
Error popup
Your personal set up
Software versions: SLEAP: 1.4.1a2 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Windows-10-10.0.22621-SP0
Logs
``` # paste relevant logs here, if any Traceback (most recent call last): File "C:\Users\Gao\.conda\envs\sleap_v1.4.1a2\lib\site-packages\sleap\gui\app.py", line 1245, in _after_plot_change overlay.redraw(self.state["video"], frame_idx) File "C:\Users\Gao\.conda\envs\sleap_v1.4.1a2\lib\site-packages\sleap\gui\overlays\base.py", line 84, in redraw self.add_to_scene(video, frame_idx, *args, **kwargs) File "C:\Users\Gao\.conda\envs\sleap_v1.4.1a2\lib\site-packages\sleap\gui\overlays\tracks.py", line 158, in add_to_scene for track, trails in all_track_trails.items(): AttributeError: 'NoneType' object has no attribute 'items' Traceback (most recent call last): File "C:\Users\Gao\.conda\envs\sleap_v1.4.1a2\lib\site-packages\sleap\gui\app.py", line 1245, in _after_plot_change overlay.redraw(self.state["video"], frame_idx) File "C:\Users\Gao\.conda\envs\sleap_v1.4.1a2\lib\site-packages\sleap\gui\overlays\base.py", line 84, in redraw self.add_to_scene(video, frame_idx, *args, **kwargs) File "C:\Users\Gao\.conda\envs\sleap_v1.4.1a2\lib\site-packages\sleap\gui\overlays\tracks.py", line 158, in add_to_scene for track, trails in all_track_trails.items(): AttributeError: 'NoneType' object has no attribute 'items' Resetting monitor window. Polling: D:/Data/Gao/Pose_estimation\models\TD_r19_240901_164410.centroid.n=892\viz\validation.*.png Start training centroid... ['sleap-train', 'C:\\Users\\Gao\\AppData\\Local\\Temp\\tmp3g8vfmfy\\240901_164410_training_job.json', 'D:/Data/Gao/Pose_estimation/FirstTest_v2.slp', '--zmq', '--controller_port', '9000', '--publish_port', '9001', '--save_viz'] INFO:sleap.nn.training:Versions: SLEAP: 1.4.1a2 TensorFlow: 2.7.0 Numpy: 1.21.6 Python: 3.7.12 OS: Windows-10-10.0.22621-SP0 INFO:sleap.nn.training:Training labels file: D:/Data/Gao/Pose_estimation/FirstTest_v2.slp INFO:sleap.nn.training:Training profile: C:\Users\Gao\AppData\Local\Temp\tmp3g8vfmfy\240901_164410_training_job.json INFO:sleap.nn.training: INFO:sleap.nn.training:Arguments: INFO:sleap.nn.training:{ "training_job_path": "C:\\Users\\Gao\\AppData\\Local\\Temp\\tmp3g8vfmfy\\240901_164410_training_job.json", "labels_path": "D:/Data/Gao/Pose_estimation/FirstTest_v2.slp", "video_paths": [ "" ], "val_labels": null, "test_labels": null, "base_checkpoint": null, "tensorboard": false, "save_viz": true, "zmq": true, "publish_port": 9001, "controller_port": 9000, "run_name": "", "prefix": "", "suffix": "", "cpu": false, "first_gpu": false, "last_gpu": false, "gpu": "auto" } INFO:sleap.nn.training: INFO:sleap.nn.training:Training job: INFO:sleap.nn.training:{ "data": { "labels": { "training_labels": "D:/Data/Gao/FirstTest_v2.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 791, 596, 586, 150, 606, 796, 152, 144, 68, 348, 638, 25, 107, 477, 196, 483, 460, 212, 376, 453, 675, 359, 124, 409, 59, 18, 201, 392, 102, 423, 614, 772, 564, 571, 516, 785, 125, 464, 536, 360, 522, 402, 160, 742, 551, 478, 466, 233, 69, 689, 52, 339, 310, 198, 647, 615, 761, 797, 730, 637, 725, 83, 521, 701, 33, 42, 663, 558, 167, 721, 390, 250, 771, 245, 166, 576, 329, 790, 274, 748, 734, 314, 432, 781, 510, 151, 295, 489, 494, 313, 278, 755, 450, 336, 130, 599, 101, 416, 784, 738, 659, 641, 96, 53, 13, 218, 722, 768, 420, 441, 783, 37, 117, 90, 746, 579, 756, 0, 207, 793, 370, 735, 94, 369, 538, 728, 568, 234, 4, 745, 759, 542, 345, 140, 504, 174, 395, 569, 180, 247, 533, 115, 288, 142, 426, 440, 226, 300, 172, 195, 24, 444, 114, 181, 720, 15, 572, 334, 442, 754, 566, 582, 199, 732, 570, 436, 147, 485, 741, 373, 550, 259, 764, 456, 705, 803, 351, 711, 143, 773, 645, 327, 708, 713, 65, 786, 279, 61, 509, 399, 653, 5, 305, 223, 162, 591, 664, 798, 563, 693, 364, 435, 122, 661, 230, 524, 704, 109, 562, 685, 580, 631, 413, 585, 3, 189, 73, 418, 471, 126, 103, 271, 770, 175, 365, 652, 169, 743, 699, 540, 344, 332, 709, 581, 617, 472, 282, 238, 204, 447, 425, 799, 715, 573, 387, 733, 626, 595, 757, 112, 513, 676, 325, 276, 560, 665, 475, 71, 261, 277, 213, 290, 688, 602, 292, 164, 200, 343, 303, 333, 491, 515, 800, 297, 29, 434, 275, 54, 719, 32, 298, 468, 225, 367, 520, 452, 634, 219, 145, 766, 476, 640, 301, 161, 656, 763, 192, 220, 753, 717, 335, 285, 64, 767, 431, 188, 401, 532, 620, 506, 716, 154, 46, 176, 658, 527, 594, 321, 268, 787, 383, 484, 296, 82, 72, 27, 168, 535, 44, 609, 639, 113, 740, 707, 539, 138, 497, 684, 554, 66, 727, 751, 700, 346, 534, 697, 776, 35, 669, 496, 400, 240, 262, 692, 377, 43, 528, 123, 120, 134, 349, 600, 81, 411, 760, 598, 752, 137, 775, 505, 322, 553, 7, 414, 222, 687, 132, 22, 649, 385, 405, 710, 286, 682, 559, 454, 750, 208, 157, 736, 469, 603, 529, 34, 217, 601, 86, 578, 79, 202, 696, 375, 197, 686, 318, 221, 67, 203, 459, 330, 782, 252, 575, 804, 116, 309, 604, 214, 317, 304, 248, 655, 577, 660, 28, 235, 156, 323, 698, 347, 1, 280, 133, 546, 731, 531, 190, 173, 379, 178, 611, 88, 194, 446, 691, 57, 439, 2, 544, 422, 486, 629, 616, 350, 678, 231, 646, 184, 106, 78, 23, 726, 179, 182, 632, 806, 723, 749, 508, 263, 593, 417, 170, 526, 141, 241, 315, 320, 293, 597, 584, 762, 397, 363, 557, 99, 31, 561, 155, 624, 119, 587, 149, 14, 779, 356, 36, 302, 191, 51, 681, 58, 9, 430, 498, 185, 267, 501, 650, 802, 378, 224, 89, 232, 307, 215, 386, 229, 795, 592, 294, 488, 737, 308, 403, 718, 714, 341, 62, 353, 627, 724, 747, 85, 48, 328, 744, 183, 153, 792, 6, 556, 429, 361, 12, 257, 437, 264, 567, 159, 774, 108, 129, 433, 618, 671, 683, 8, 628, 342, 40, 415, 458, 455, 668, 362, 319, 445, 227, 77, 537, 394, 299, 283, 636, 104, 38, 372, 703, 654, 366, 507, 187, 50, 480, 500, 408, 657, 679, 100, 443, 171, 482, 75, 642, 523, 95, 780, 374, 613, 552, 695, 60, 324, 729, 666, 530, 388, 70, 358, 427, 237, 340, 396, 30, 312, 549, 702, 272, 381, 492, 311, 331, 243, 619, 541, 608, 354, 63, 672, 555, 588, 49, 457, 256, 778, 622, 547, 91, 127, 338, 165, 404, 473, 398, 543, 355, 368, 97, 474, 281, 545, 467, 47, 260, 270, 158, 407, 690, 11, 244, 648, 10, 384, 465, 163, 769, 45, 135, 389, 495, 461, 87, 712, 610, 487, 337, 623, 266, 17, 265, 98, 490, 635, 662, 287, 789, 380, 758, 216, 448, 481, 739, 393, 92, 371, 242, 565, 211, 499, 630, 26, 111, 253, 306, 20, 206, 479, 246, 406, 93, 80, 177, 765, 131, 357, 677, 255, 428, 643, 254, 209, 193, 449, 625, 583 ], "validation_inds": [ 412, 251, 148, 16, 673, 19, 136, 228, 612, 421, 56, 210, 284, 128, 517, 410, 514, 438, 503, 39, 651, 589, 186, 110, 525, 605, 424, 105, 258, 706, 470, 84, 205, 794, 249, 269, 680, 670, 236, 139, 511, 382, 694, 121, 667, 41, 326, 518, 633, 502, 512, 55, 451, 352, 674, 805, 621, 74, 291, 644, 574, 607, 316, 118, 239, 519, 801, 289, 493, 462, 463, 788, 777, 548, 391, 419, 590, 146, 273, 21, 76 ], "test_inds": null, "search_path_hints": [ "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 0.5, "pad_to_stride": 16, "resize_and_pad_to_target": true, "target_height": 480, "target_width": 640 }, "instance_cropping": { "center_on_part": "TTI", "crop_size": null, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 16, "output_stride": 2, "filters": 16, "filters_rate": 2.0, "middle_block": true, "up_interpolate": true, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": { "anchor_part": "TTI", "sigma": 2.5, "output_stride": 2, "loss_weight": 1.0, "offset_refinement": false }, "centered_instance": null, "multi_instance": null, "multi_class_bottomup": null, "multi_class_topdown": null }, "base_checkpoint": "D:\\Data\\Gao\\Pose_estimation\\models\\TD_r18_240711_201243.centroid.n=807" }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": true, "rotation_min_angle": -15.0, "rotation_max_angle": 15.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 4, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 200, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-08, "plateau_patience": 20 } }, "outputs": { "save_outputs": true, "run_name": "240901_164410.centroid.n=892", "run_name_prefix": "TD_r19_", "run_name_suffix": "", "runs_folder": "D:/Data/Gao/Pose_estimation\\models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.4.1a2", "filename": "C:\\Users\\Gao\\AppData\\Local\\Temp\\tmp3g8vfmfy\\240901_164410_training_job.json" } INFO:sleap.nn.training: INFO:sleap.nn.training:Auto-selected GPU 0 with 22761 MiB of free memory. INFO:sleap.nn.training:Using GPU 0 for acceleration. INFO:sleap.nn.training:Disabled GPU memory pre-allocation. INFO:sleap.nn.training:System: GPUs: 1/1 available Device: /physical_device:GPU:0 Available: True Initialized: False Memory growth: True INFO:sleap.nn.training: INFO:sleap.nn.training:Initializing trainer... INFO:sleap.nn.training:Loading training labels from: D:/Data/Gao/Pose_estimation/FirstTest_v2.slp INFO:sleap.nn.training:Creating training and validation splits from validation fraction: 0.1 INFO:sleap.nn.training: Splits: Training = 803 / Validation = 89. INFO:sleap.nn.training:Setting up for training... INFO:sleap.nn.training:Setting up pipeline builders... INFO:sleap.nn.training:Setting up model... INFO:sleap.nn.training:Building test pipeline... 2024-09-01 16:44:18.148388: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-09-01 16:44:18.589325: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21340 MB memory: -> device: 0, name: NVIDIA GeForce RTX 4090, pci bus id: 0000:41:00.0, compute capability: 8.9 INFO:sleap.nn.training:Loaded test example. [2.012s] INFO:sleap.nn.training: Input shape: (240, 320, 1) INFO:sleap.nn.training:Created Keras model. INFO:sleap.nn.training: Backbone: UNet(stacks=1, filters=16, filters_rate=2.0, kernel_size=3, stem_kernel_size=7, convs_per_block=2, stem_blocks=0, down_blocks=4, middle_block=True, up_blocks=3, up_interpolate=True, block_contraction=False) INFO:sleap.nn.training: Max stride: 16 INFO:sleap.nn.training: Parameters: 1,953,105 INFO:sleap.nn.training: Heads: INFO:sleap.nn.training: [0] = CentroidConfmapsHead(anchor_part='TTI', sigma=2.5, output_stride=2, loss_weight=1.0) INFO:sleap.nn.training: Outputs: INFO:sleap.nn.training: [0] = KerasTensor(type_spec=TensorSpec(shape=(None, 120, 160, 1), dtype=tf.float32, name=None), name='CentroidConfmapsHead/BiasAdd:0', description="created by layer 'CentroidConfmapsHead'") INFO:sleap.nn.training:Loaded previous model weights from D:\Data\Gao\Pose_estimation\models\TD_r18_240711_201243.centroid.n=807\best_model.h5 INFO:sleap.nn.training:Setting up data pipelines... INFO:sleap.nn.training:Training set: n = 803 INFO:sleap.nn.training:Validation set: n = 89 INFO:sleap.nn.training:Setting up optimization... INFO:sleap.nn.training: Learning rate schedule: LearningRateScheduleConfig(reduce_on_plateau=True, reduction_factor=0.5, plateau_min_delta=1e-06, plateau_patience=5, plateau_cooldown=3, min_learning_rate=1e-08) INFO:sleap.nn.training: Early stopping: EarlyStoppingConfig(stop_training_on_plateau=True, plateau_min_delta=1e-08, plateau_patience=20) INFO:sleap.nn.training:Setting up outputs... INFO:sleap.nn.callbacks:Training controller subscribed to: tcp://127.0.0.1:9000 (topic: ) INFO:sleap.nn.training: ZMQ controller subcribed to: tcp://127.0.0.1:9000 INFO:sleap.nn.callbacks:Progress reporter publishing on: tcp://127.0.0.1:9001 for: not_set INFO:sleap.nn.training: ZMQ progress reporter publish on: tcp://127.0.0.1:9001 INFO:sleap.nn.training:Created run path: D:/Data/Gao/Pose_estimation\models\TD_r19_240901_164410.centroid.n=892 INFO:sleap.nn.training:Setting up visualization... INFO:sleap.nn.training:Finished trainer set up. [4.5s] INFO:sleap.nn.training:Creating tf.data.Datasets for training data generation... Traceback (most recent call last): File "C:\Users\Gao\.conda\envs\sleap_v1.4.1a2\Scripts\sleap-train-script.py", line 33, in