val conf = new SparkConf().setMaster("local[2]")
.setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
在创建 StreamingContext 的时候实创建了 graph: DStreamGraph:
private[streaming] val graph: DStreamGraph = {
if (isCheckpointPresent) {
_cp.graph.setContext(this)
_cp.graph.restoreCheckpointData()
_cp.graph
} else {
require(_batchDur != null, "Batch duration for StreamingContext cannot be null")
val newGraph = new DStreamGraph()
newGraph.setBatchDuration(_batchDur)
newGraph
}
}
前言
Spark Streaming 是基于Spark Core将流式计算分解成一系列的小批处理任务来执行。
在Spark Streaming里,总体负责任务的动态调度是
JobScheduler
,而JobScheduler
有两个很重要的成员:JobGenerator
和ReceiverTracker
。JobGenerator
负责将每个 batch 生成具体的 RDD DAG ,而ReceiverTracker
负责数据的来源。Spark Streaming里的
DStream
可以看成是Spark Core里的RDD的模板,DStreamGraph
是RDD DAG的模板。跟着例子看流程
DStream 也和 RDD 一样有着转换(transformation)和 输出(output)操作,通过
transformation
操作会产生新的DStream
,典型的transformation
操作有map(), filter(), reduce(), join()等。RDD的输出操作会触发action,而DStream的输出操作也会新建一个ForeachDStream
,用一个函数func来记录所需要做的操作。下面看一个例子:
在创建
StreamingContext
的时候实创建了 graph: DStreamGraph:若
checkpoint
可用,会优先从 checkpoint 恢复 graph,否则新建一个。graph用来动态的创建RDD DAG,DStreamGraph
有两个重要的成员:inputStreams
和outputStreams
。Spark Streaming记录DStream DAG 的方式就是通过
DStreamGraph
实例记录所有的outputStreams
,因为outputStream
会通过依赖dependencies
来和parent DStream形成依赖链,通过outputStreams
向前追溯遍历就可以得到所有上游的DStream,另外,DStreamGraph
还会记录所有的inputStreams
,避免每次为查找 input stream 而对 output steam 进行 BFS 的消耗。继续回到例子,这里通过ssc.socketTextStream 创建了一个
ReceiverInputDStream
,在其父类 InputDStream 中会将该ReceiverInputDStream
添加到inputStream
里。接着调用了flatMap方法:
创建了一个
FlatMappedDStream
,而该类的compute方法是在父 DStream(ReceiverInputDStream) 在对应batch时间的RDD上调用了flatMap方法,也就是构造了rdd.flatMap(func)
这样的代码,后面的操作类似,随后形成的是rdd.flatMap(func1).map(func2).reduceByKey(func3).take()
,这不就是我们spark core里的东西吗。另外其dependencies
是直接指向了其构造参数parent,也就是刚才的ReceiverInputDStream
,每个新建的DStream的dependencies都是指向了其父DStream,这样就构成了一个依赖链,也就是形成了DStream DAG。这里我们再看看最后的 print() 操作:
在print() 方法里构建了一个foreachFunc方法:对一个rdd进行了take操作并打印(spark core中的action操作)。随后创建了ForEachDStream实例并调用了register()方法:
将 OutputStream 添加到
DStreamGraph
的outputStreams
里。可以看到刚才构建的 foreachFunc 方法最终用在了ForEachDStream
实例的generateJob
方法里,并创建了一个Streaming 中的Job,在job中的run方法中会调用这个方法,也就是会触发action操作。注意这里Spark Streaming的Job和Spark Core里的Job是不一样的,Streaming的Job执行的是前面构造的方法,方法里面是Core里的Job,方法可以定义多个core里的Job,也可以一个core里的job都没有。