Closed gaocegege closed 1 year ago
│ /home/gaocegege/applications/miniconda3/envs/dev/lib/python3.9/site-packages/accelerate/big_mode │ │ ling.py:108 in register_empty_parameter │ │ │ │ 105 │ │ if param is not None: │ │ 106 │ │ │ param_cls = type(module._parameters[name]) │ │ 107 │ │ │ kwargs = module._parameters[name].__dict__ │ │ ❱ 108 │ │ │ module._parameters[name] = param_cls(module._parameters[name].to(device), ** │ │ 109 │ │ │ 110 │ def register_empty_buffer(module, name, buffer): │ │ 111 │ │ old_register_buffer(module, name, buffer) │ │ │ │ /home/gaocegege/applications/miniconda3/envs/dev/lib/python3.9/site-packages/torch/nn/parameter. │ │ py:36 in __new__ │ │ │ │ 33 │ │ if type(data) is torch.Tensor or type(data) is Parameter: │ │ 34 │ │ │ # For ease of BC maintenance, keep this path for standard Tensor. │ │ 35 │ │ │ # Eventually (tm), we should change the behavior for standard Tensor to matc │ │ ❱ 36 │ │ │ return torch.Tensor._make_subclass(cls, data, requires_grad) │ │ 37 │ │ │ │ 38 │ │ # Path for custom tensors: set a flag on the instance to indicate parameter-ness │ │ 39 │ │ t = data.detach().requires_grad_(requires_grad) │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ RuntimeError: Only Tensors of floating point and complex dtype can require gradients