I have tried to add Task=core.Task.REGRESSION argument to both the pd_dataframe_to_tf_dataset and model (all) but i get this error.
train_data = pd_dataframe_to_tf_dataset(car, label="price", task=core.Task.REGRESSION,)
model = tfdf.keras.RandomForestModel()
model.fit(train_data, task=core.Task.REGRESSION,)
ValueError: The model'staskattribute (CLASSIFICATION) does not match thetaskattribute passed topd_dataframe_to_tf_dataset(REGRESSION).
And ofcourse If i don't add core.Task.REGRESSION to pd_dataframe_to_tf_dataset i get the error
ValueError: The number of unique classes (189) exceeds max_num_classes (100). A high number of unique value / classes might indicate that the problem is a regression or a ranking instead of a classification. If this problem is effectively a classification problem, increasemax_num_classes`.
I have tried to add Task=core.Task.REGRESSION argument to both the pd_dataframe_to_tf_dataset and model (all) but i get this error.
ValueError: The model's
taskattribute (CLASSIFICATION) does not match the
taskattribute passed to
pd_dataframe_to_tf_dataset(REGRESSION).
And ofcourse If i don't add core.Task.REGRESSION to pd_dataframe_to_tf_dataset i get the error
ValueError: The number of unique classes (189) exceeds max_num_classes (100). A high number of unique value / classes might indicate that the problem is a regression or a ranking instead of a classification. If this problem is effectively a classification problem, increase
max_num_classes`.