Closed Pices-26 closed 4 years ago
I've used this command and got no errors. It was ran from research folder C:\Users\User\Downloads\protoc\bin\protoc object_detection/protos/*.proto --python_out=.
cd research folder and run this
protoc --python_out=. .\object_detection\protos\input_reader.proto python setup.py build python setup.py install
cd research folder and run this
protoc --python_out=. .\object_detection\protos\input_reader.proto python setup.py build python setup.py install
this is what I'm getting now
Traceback (most recent call last):
File "model_builder.py", line 35, in
cd research folder and run this protoc --python_out=. .\object_detection\protos\input_reader.proto python setup.py build python setup.py install
this is what I'm getting now
Traceback (most recent call last): File "model_builder.py", line 35, in from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res File "D:\python_ver\python364\lib\site-packages\object_detection-0.1-py3.6.egg\object_detection\models\faster_rcnn_inception_resnet_v2_feature_extractor.py", line 28, in from nets import inception_resnet_v2 ModuleNotFoundError: No module named 'nets'
you didn't set the paths correctly do the following
set PYTHONPATH=%PYTHONPATH%;[PATH TO RESEARCH FOLDER] set PYTHONPATH=%PYTHONPATH%;[PATH TO SLIM FOLDER INSIDE THE RESEARCH FOLDER]
did it work?
My model test has worked, my live object detection works too. But that's a preset model. Tomorrow I will train my own model and see how it will work. I'll update you. Other than that, thank you so much. Do I have to set this path every time I do something in a different directory location? Also I'm using pycharm combined with just console. Do you think it's a good idea or should I move over to conda? or just linux all together?
yes you have to set it every time, or you can simply move nets folder to current directory but setting pythonpath is much more useful in many ways. i have never used pycharm for object detection, i’m using conda and it’s very useful imo but just stay with the one you’re comfortable
I've used this line python legacy/train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.config
and got this
Traceback (most recent call last):
File "legacy/train.py", line 184, in
I know for a fact that this file is inside of data. data folder is in the directory that I'm running the command from. It looks like my path is set incorrectly. Is it something to do with pointing it not at set PYTHONPATH=%PYTHONPATH%;[PATH TO RESEARCH FOLDER] set PYTHONPATH=%PYTHONPATH%;[PATH TO SLIM FOLDER INSIDE THE RESEARCH FOLDER] ?
label_map_path: "data/Obj_det.pbtxt" this is my path in the config file
How much disk memory would I need for like 150 photos?
I've got 140gb on D and 40gb on C. Some people say it might be linked to memory
!export PYTHONPATH=$PYTHONPATH:
/content/gdrive/My Drive/colab_data/models/research/object_detection:
/content/gdrive/My Drive/colab_data/models/research/object_detection/slim python content/gdrive/My Drive/colab_data/models/research/object_detection/model_main.py \ --pipeline_config_path=object_detection/my_data/pipeline.config \ --model_dir=object_detection/my_data/output \ --num_train_steps=1000 \ --alsologtostderr
/bin/bash: /content/gdrive/My: No such file or directory
/bin/bash: /content/gdrive/My: No such file or directory
/bin/bash: line 0: export: content/gdrive/My': not a valid identifier /bin/bash: line 0: export:
Drive/colab_data/models/research/object_detection/model_main.py': not a valid identifier
/bin/bash: line 0: export: --pipeline_config_path=object_detection/my_data/pipeline.config': not a valid identifier /bin/bash: line 0: export:
--model_dir=object_detection/my_data/output': not a valid identifier
/bin/bash: line 0: export: --num_train_steps=1000': not a valid identifier /bin/bash: line 0: export:
--alsologtostderr': not a valid identifier
setting a pythonpath does not change your current working directory, it just enables libraries in that direction for you to use them without moving them to working directory. the reason why you’re getting such error is probably because you haven’t edit the paths correctly in the contig file according to current directory. i can’t know how did you configure the folders but i can say that it has nothing to do with memory issue
setting a pythonpath does not change your current working directory, it just enables libraries in that direction for you to use them without moving them to working directory. the reason why you’re getting such error is probably because you haven’t edit the paths correctly in the contig file according to current directory. i can’t know how did you configure the folders but i can say that it has nothing to do with memory issue fine_tune_checkpoint: "/content/gdrive/My Drive/colab_data/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt" from_detection_checkpoint: true num_steps: 20000 } train_input_reader { label_map_path: "/content/gdrive/My Drive/colab_data/models/research/object_detection/my_data/32classes_label_map.pbtxt" tf_record_input_reader { input_path: "/content/gdrive/My Drive/colab_data/models/research/object_detection/my_data/train_data.record" } } eval_config { num_examples: 4280 max_evals: 10 use_moving_averages: false } eval_input_reader { label_map_path: "/content/gdrive/My Drive/colab_data/models/research/object_detection/my_data/32classes_label_map.pbtxt" shuffle: false num_readers: 1 tf_record_input_reader { input_path: "/content/gdrive/My Drive/colab_data/models/research/object_detection/my_data/test_data.record" } }
my paths are set correctly. The file is there and it's contents are what they are meant to be.
train_config: { batch_size: 1 optimizer { rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } } fine_tune_checkpoint: "ssd_mobilenet_v1_coco_2017_11_17/model.ckpt" from_detection_checkpoint: true load_all_detection_checkpoint_vars: true
num_steps: 200000 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } }
train_input_reader: { tf_record_input_reader { input_path: "data/train.record" } label_map_path: "data/Obj_det.pbtxt" }
eval_config: { metrics_set: "coco_detection_metrics" num_examples: 1100 }
eval_input_reader: { tf_record_input_reader { input_path: "data/test.record" } label_map_path: "data/Obj_det.pbtxt" shuffle: false num_readers: 1 }
can you change the name of obj_det file to maplabel and the path to data/maplabel.pbtxt for both rows in the config file
same error at the end tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: data/maplabel.pbtxt : The system cannot find the file specified. ; No such file or directory
Would I have to update?
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:
WARNING:tensorflow:From D:\python_ver\python364\lib\site-packages\tensorflow\python\platform\app.py:125: main (from main) is deprecated and will be removed in a future version. Instructions for updating: Use object_detection/model_main.py. WARNING:tensorflow:From D:\python_ver\python364\Lib\site-packages\tensorflow\models\research\object_detection\legacy\trainer.py:266: create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Please switch to tf.train.create_global_step WARNING:tensorflow:From D:\python_ver\python364\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating:
I have the exact same problem, any solutions yet?
can you upload your config file
Here is my config file:
# Faster R-CNN with Inception v2, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
faster_rcnn {
num_classes: 2
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 32
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "data\train.record-?????-of-00010"
}
label_map_path: "data\objectdetection.pbtxt"
}
eval_config: {
metrics_set: "coco_detection_metrics"
num_examples: 1101
}
eval_input_reader: {
tf_record_input_reader {
input_path: "data\test.record-?????-of-00010"
}
label_map_path: "data\objectdetection.pbtxt"
shuffle: false
num_readers: 1
}
are your record files really called like that?
On 22 Apr 2019 Mon at 10:48 AM Théophile notifications@github.com wrote:
Here is my config file:
`# Faster R-CNN with Inception v2, configured for Oxford-IIIT Pets Dataset. Users should configure the fine_tune_checkpoint field in the train config as well as the label_map_path and input_path fields in the train_input_reader and eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that should be configured.
model { faster_rcnn { num_classes: 2 image_resizer { keep_aspect_ratio_resizer { min_dimension: 600 max_dimension: 1024 } } feature_extractor { type: 'faster_rcnn_inception_v2' first_stage_features_stride: 16 } first_stage_anchor_generator { grid_anchor_generator { scales: [0.25, 0.5, 1.0, 2.0] aspect_ratios: [0.5, 1.0, 2.0] height_stride: 16 width_stride: 16 } } first_stage_box_predictor_conv_hyperparams { op: CONV regularizer { l2_regularizer { weight: 0.0 } } initializer { truncated_normal_initializer { stddev: 0.01 } } } first_stage_nms_score_threshold: 0.0 first_stage_nms_iou_threshold: 0.7 first_stage_max_proposals: 300 first_stage_localization_loss_weight: 2.0 first_stage_objectness_loss_weight: 1.0 initial_crop_size: 14 maxpool_kernel_size: 2 maxpool_stride: 2 second_stage_box_predictor { mask_rcnn_box_predictor { use_dropout: false dropout_keep_probability: 1.0 fc_hyperparams { op: FC regularizer { l2_regularizer { weight: 0.0 } } initializer { variance_scaling_initializer { factor: 1.0 uniform: true mode: FAN_AVG } } } } } second_stage_post_processing { batch_non_max_suppression { score_threshold: 0.0 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 300 } score_converter: SOFTMAX } second_stage_localization_loss_weight: 2.0 second_stage_classification_loss_weight: 1.0 } }
train_config: { batch_size: 32 optimizer { momentum_optimizer: { learning_rate: { manual_step_learning_rate { initial_learning_rate: 0.0002 schedule { step: 900000 learning_rate: .00002 } schedule { step: 1200000 learning_rate: .000002 } } } momentum_optimizer_value: 0.9 } use_moving_average: false } gradient_clipping_by_norm: 10.0 fine_tune_checkpoint: "faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt" from_detection_checkpoint: true load_all_detection_checkpoint_vars: true Note: The below line limits the training process to 200K steps, which we empirically found to be sufficient enough to train the pets dataset. This effectively bypasses the learning rate schedule (the learning rate will never decay). Remove the below line to train indefinitely.
num_steps: 200000 data_augmentation_options { random_horizontal_flip { } } }
train_input_reader: { tf_record_input_reader { input_path: "data\train.record-?????-of-00010" } label_map_path: "data\objectdetection.pbtxt" }
eval_config: { metrics_set: "coco_detection_metrics" num_examples: 1101 }
eval_input_reader: { tf_record_input_reader { input_path: "data\test.record-?????-of-00010" } label_map_path: "data\objectdetection.pbtxt" shuffle: false num_readers: 1 } `
— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/tensorflow/models/issues/6595#issuecomment-485353971, or mute the thread https://github.com/notifications/unsubscribe-auth/ALAGXMMYBHSO2IMXOFT2SFDPRVUVJANCNFSM4HGUCNEA .
The problem was in fact the record file names, but even by renaming them "train.record" and "test.record" (which are the real names) it didn't work, so I tried to rename them " train. " and " test. " and it magically worked.
here is the config file
model { ssd { num_classes: 1 box_coder { faster_rcnn_box_coder { y_scale: 10.0 x_scale: 10.0 height_scale: 5.0 width_scale: 5.0 } } matcher { argmax_matcher { matched_threshold: 0.5 unmatched_threshold: 0.5 ignore_thresholds: false negatives_lower_than_unmatched: true force_match_for_each_row: true } } similarity_calculator { iou_similarity { } } anchor_generator { ssd_anchor_generator { num_layers: 6 min_scale: 0.2 max_scale: 0.95 aspect_ratios: 1.0 aspect_ratios: 2.0 aspect_ratios: 0.5 aspect_ratios: 3.0 aspect_ratios: 0.3333 } } image_resizer { fixed_shape_resizer { height: 300 width: 300 } } box_predictor { convolutional_box_predictor { min_depth: 0 max_depth: 0 num_layers_before_predictor: 0 use_dropout: false dropout_keep_probability: 0.8 kernel_size: 1 box_code_size: 4 apply_sigmoid_to_scores: false conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } } feature_extractor { type: 'ssd_mobilenet_v1' min_depth: 16 depth_multiplier: 1.0 conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } loss { classification_loss { weighted_sigmoid { } } localization_loss { weighted_smooth_l1 { } } hard_example_miner { num_hard_examples: 3000 iou_threshold: 0.99 loss_type: CLASSIFICATION max_negatives_per_positive: 3 min_negatives_per_image: 0 } classification_weight: 1.0 localization_weight: 1.0 } normalize_loss_by_num_matches: true post_processing { batch_non_max_suppression { score_threshold: 1e-8 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 100 } score_converter: SIGMOID } } }
train_config: { batch_size: 1 optimizer { rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } } fine_tune_checkpoint: "ssd_mobilenet_v1_coco_2017_11_17/model.ckpt" from_detection_checkpoint: true load_all_detection_checkpoint_vars: true
num_steps: 200000 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } }
train_input_reader: { tf_record_input_reader { input_path: "data/train.record" } label_map_path: "data/maplabel.pbtxt" }
eval_config: { metrics_set: "coco_detection_metrics" num_examples: 1100 }
eval_input_reader: { tf_record_input_reader { input_path: "data/test.record" } label_map_path: "data/maplabel.pbtxt" shuffle: false num_readers: 1 }
This problem is generated when you have not set the correct path, use set pythonpath ='path name'
This problem is generated when you have not set the correct path, use set pythonpath ='path name'
what do mean by the pythonpath='path name', I am still having the same problem, which is no such process
same error at the end tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: data/maplabel.pbtxt : The system cannot find the file specified. ; No such file or directory
Have u fix the error, it is so annoying, stuck in the last step
Have you fix this issue ?
here is the config file
SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset.
Users should configure the fine_tune_checkpoint field in the train config as
well as the label_map_path and input_path fields in the train_input_reader and
eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
should be configured.
model { ssd { num_classes: 1 box_coder { faster_rcnn_box_coder { y_scale: 10.0 x_scale: 10.0 height_scale: 5.0 width_scale: 5.0 } } matcher { argmax_matcher { matched_threshold: 0.5 unmatched_threshold: 0.5 ignore_thresholds: false negatives_lower_than_unmatched: true force_match_for_each_row: true } } similarity_calculator { iou_similarity { } } anchor_generator { ssd_anchor_generator { num_layers: 6 min_scale: 0.2 max_scale: 0.95 aspect_ratios: 1.0 aspect_ratios: 2.0 aspect_ratios: 0.5 aspect_ratios: 3.0 aspect_ratios: 0.3333 } } image_resizer { fixed_shape_resizer { height: 300 width: 300 } } box_predictor { convolutional_box_predictor { min_depth: 0 max_depth: 0 num_layers_before_predictor: 0 use_dropout: false dropout_keep_probability: 0.8 kernel_size: 1 box_code_size: 4 apply_sigmoid_to_scores: false conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } } feature_extractor { type: 'ssd_mobilenet_v1' min_depth: 16 depth_multiplier: 1.0 conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } loss { classification_loss { weighted_sigmoid { } } localization_loss { weighted_smooth_l1 { } } hard_example_miner { num_hard_examples: 3000 iou_threshold: 0.99 loss_type: CLASSIFICATION max_negatives_per_positive: 3 min_negatives_per_image: 0 } classification_weight: 1.0 localization_weight: 1.0 } normalize_loss_by_num_matches: true post_processing { batch_non_max_suppression { score_threshold: 1e-8 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 100 } score_converter: SIGMOID } } }
train_config: { batch_size: 1 optimizer { rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } } fine_tune_checkpoint: "ssd_mobilenet_v1_coco_2017_11_17/model.ckpt" from_detection_checkpoint: true load_all_detection_checkpoint_vars: true
Note: The below line limits the training process to 200K steps, which we
empirically found to be sufficient enough to train the pets dataset. This
effectively bypasses the learning rate schedule (the learning rate will
never decay). Remove the below line to train indefinitely.
num_steps: 200000 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } }
train_input_reader: { tf_record_input_reader { input_path: "data/train.record" } label_map_path: "data/maplabel.pbtxt" }
eval_config: { metrics_set: "coco_detection_metrics" num_examples: 1100 }
eval_input_reader: { tf_record_input_reader { input_path: "data/test.record" } label_map_path: "data/maplabel.pbtxt" shuffle: false num_readers: 1 }
same error at the end tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: data/maplabel.pbtxt : The system cannot find the file specified. ; No such file or directory
Did you check the extension of your maplabel.pbtxt is really .pbtxt because i ran into exactly same error because of making this file in a notepad and saving as labelmap.pbtxt while it was still a .txt file
My goodness, I have the exact same error that I have been trying to deal with for the past 10 hours. 100% sure the directory in the config file is correct. 100% sure labelmap.pbtxt is PBTXT file but then the error: No such file or directory is there for the labelmap..
i am having the same error
tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: training\label_map.pbtxt : The system cannot find the file specified. ; No such file or directory
I am using it for object detection..
python train.py --logtostderr --train_dir=training\ --pipeline_config_path=training\faster_rcnn_inception_v2_coco.config
error log: tf version 1.14.0
(tfod) C:\Users\passionHEART\Desktop\tfod\models\research>python train.py --logtostderr --train_dir=training\ --pipeline_config_path=training\faster_rcnn_inception_v2_coco.config C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorflow\python\framework\dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorflow\python\framework\dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorflow\python\framework\dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorflow\python\framework\dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorflow\python\framework\dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorflow\python\framework\dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorboard\compat\tensorflow_stub\dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorboard\compat\tensorflow_stub\dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorboard\compat\tensorflow_stub\dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorboard\compat\tensorflow_stub\dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorboard\compat\tensorflow_stub\dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\tensorboard\compat\tensorflow_stub\dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) WARNING:tensorflow: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:
WARNING:tensorflow:From C:\Users\passionHEART\Desktop\tfod\models\research\nets\inception_resnet_v2.py:373: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.
WARNING:tensorflow:From C:\Users\passionHEART\Desktop\tfod\models\research\nets\mobilenet\mobilenet.py:389: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
WARNING:tensorflow:From train.py:55: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.
WARNING:tensorflow:From train.py:55: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.
WARNING:tensorflow:From train.py:184: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead.
WARNING:tensorflow:From C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\absl\app.py:250: main (from main) is deprecated and will be removed in a future version. Instructions for updating: Use object_detection/model_main.py. W0422 16:24:07.242830 11904 deprecation.py:323] From C:\Users\passionHEART.conda\envs\tfod\lib\site-packages\absl\app.py:250: main (from main) is deprecated and will be removed in a future version. Instructions for updating: Use object_detection/model_main.py. WARNING:tensorflow:From train.py:90: The name tf.gfile.MakeDirs is deprecated. Please use tf.io.gfile.makedirs instead.
W0422 16:24:07.247827 11904 deprecation_wrapper.py:119] From train.py:90: The name tf.gfile.MakeDirs is deprecated. Please use tf.io.gfile.makedirs instead.
WARNING:tensorflow:From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\utils\config_util.py:94: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
W0422 16:24:07.256824 11904 deprecation_wrapper.py:119] From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\utils\config_util.py:94: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
WARNING:tensorflow:From train.py:95: The name tf.gfile.Copy is deprecated. Please use tf.io.gfile.copy instead.
W0422 16:24:07.269821 11904 deprecation_wrapper.py:119] From train.py:95: The name tf.gfile.Copy is deprecated. Please use tf.io.gfile.copy instead.
WARNING:tensorflow:From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\anchor_generators\grid_anchor_generator.py:59: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast
instead.
W0422 16:24:07.340774 11904 deprecation.py:323] From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\anchor_generators\grid_anchor_generator.py:59: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast
instead.
WARNING:tensorflow:From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\legacy\trainer.py:266: create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.create_global_step
W0422 16:24:07.354768 11904 deprecation.py:323] From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\legacy\trainer.py:266: create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.create_global_step
WARNING:tensorflow:From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\data_decoders\tf_example_decoder.py:167: The name tf.FixedLenFeature is deprecated. Please use tf.io.FixedLenFeature instead.
W0422 16:24:07.368759 11904 deprecation_wrapper.py:119] From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\data_decoders\tf_example_decoder.py:167: The name tf.FixedLenFeature is deprecated. Please use tf.io.FixedLenFeature instead.
WARNING:tensorflow:From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\data_decoders\tf_example_decoder.py:182: The name tf.VarLenFeature is deprecated. Please use tf.io.VarLenFeature instead.
W0422 16:24:07.373755 11904 deprecation_wrapper.py:119] From C:\Users\passionHEART\Desktop\tfod\models\research\object_detection\data_decoders\tf_example_decoder.py:182: The name tf.VarLenFeature is deprecated. Please use tf.io.VarLenFeature instead.
Traceback (most recent call last):
File "train.py", line 184, in
@MlvPrasadOfficial, @Mayank-savaliya, @timothylimyl
I was with the same error and I just resolved. My problem was that the format file of "label_map.pbtxt" was ".txt" and the format file that tensorflow needs is "pbtxt"...
So what I did was I opened the label_map.pbtxt with notepad++ and saved as "filename: label_map.pbtxt" and "save as type: All types"
That's works to me. Let me know if this helped.
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) NotFoundError Traceback (most recent call last)
i have same problem , have you solved it? compat.as_bytes(self.__name), 1024 * 512) tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: \training\labelmap.pbtxt : The system cannot find the file specified. ; No such file or directory
same error at the end tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: data/maplabel.pbtxt : The system cannot find the file specified. ; No such file or directory
Did you check the extension of your maplabel.pbtxt is really .pbtxt because i ran into exactly same error because of making this file in a notepad and saving as labelmap.pbtxt while it was still a .txt file
Man... what a silly issue i was having... Thanks for saving
File "eval.py", line 43, in eval vocab_processor=tf.contrib.learn.preprocessing.VocabularyProcessor.restore(vocab_path) File "C:\Users\PC\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\preprocessing\text.py", line 246, in restore return pickle.loads(f.read()) File "C:\Users\PC\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 125, in read self._preread_check() File "C:\Users\PC\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 85, in _preread_check compat.as_bytes(self.__name), 1024 * 512, status) File "C:\Users\PC\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 528, in exit c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: ..\vocab : The system cannot find the file specified. ; No such file or directory
any one please help me
Few things before the start Yes, protobuf was compiled. I ran the basic object_detection model test no problem. That input_reader_pb2 is there along with every other file I made a live camera feed with this object_detection When I try to run model_test_builder in object_detection\builders I get this issue
D:\python_ver\python364\Lib\site-packages\object_detection\builders>python model_builder_test.py Traceback (most recent call last): File "model_builder_test.py", line 23, in
from object_detection.builders import model_builder
File "D:\python_ver\python364\lib\site-packages\object_detection\builders\model_builder.py", line 20, in
from object_detection.builders import anchor_generator_builder
File "D:\python_ver\python364\lib\site-packages\object_detection\builders\anchor_generator_builder.py", line 21, in
from object_detection.protos import anchor_generator_pb2
ImportError: cannot import name 'anchor_generator_pb2'
This means that protobuf wasn't installed fully correctly which might lead to my main issue down below. But everything was done including exports of path and compilation. I've been on this 2 whole days now. Maybe someone knows the answer. Thank you
System information
TF version: 1.13.1 Python Version: 3.6.4 protoc version: 3.4
Source code / logs
D:\python_ver\python364\Lib\site-packages\tensorflow\models-master\research\object_detection>python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.config Traceback (most recent call last): File "train.py", line 49, in
from object_detection.builders import dataset_builder
File "D:\python_ver\python364\lib\site-packages\object_detection\builders\dataset_builder.py", line 27, in
from object_detection.data_decoders import tf_example_decoder
File "D:\python_ver\python364\lib\site-packages\object_detection\data_decoders\tf_example_decoder.py", line 24, in
from object_detection.protos import input_reader_pb2
ImportError: cannot import name 'input_reader_pb2'