Open vyyxi opened 5 years ago
Thank you for your post. We noticed you have not filled out the following field in the issue template. Could you update them if they are relevant in your case, or leave them as N/A? Thanks. Exact command to reproduce
CUDA_VISIBLE_DEVICES=6 python train.py --logtostderr --training_number_of_steps=10000 --train_split='train' --model_variant="nas_hnasnet" --atrous_rates=6 --atrous_rates=12 --atrous_rates=18 --output_stride=16 --decoder_output_stride=4 --train_crop_size="385,385" --train_batch_size=4 --dataset='cityscapes' --train_logdir="/workspace/models-master/cityscapes/checkpoint" --dataset_dir="/workspace/models-master/cityscapes/tfrecord" --fine_tune_batch_norm=False CUDA_VISIBLE_DEVICES=7 python eval.py --logtostderr --eval_split='val' --model_variant="nas_hnasnet" --atrous_rates=6 --atrous_rates=12 --atrous_rates=18 --output_stride=16 --decoder_output_stride=4 --dataset="cityscapes" --eval_crop_size="385,385" --checkpoint_dir="/workspace/models-master/cityscapes/checkpoint" --eval_logdir="/workspace/models-master/cityscapes/eval" --dataset_dir="/workspace/models-master/cityscapes/tfrecord" @tensorflowbutler
And I add this in eval.py to print miou, I don't know if it's right : print_miou = tf.Print(miou,[miou],'miou is:') tf.summary.scalar('print_miou',print_miou)
following
Additionally, whenever I run hnasnet, it generates the same graph. Is it supposed to do this? I thought the point of architecture search was that the graph would have differences... or are there things in the cells that I'm missing.
CUDA_VISIBLE_DEVICES=6 python train.py --logtostderr --training_number_of_steps=10000 --train_split='train' --model_variant="nas_hnasnet" --atrous_rates=6 --atrous_rates=12 --atrous_rates=18 --output_stride=16 --decoder_output_stride=4 --train_crop_size="385,385" --train_batch_size=4 --dataset='cityscapes' --train_logdir="/workspace/models-master/cityscapes/checkpoint" --dataset_dir="/workspace/models-master/cityscapes/tfrecord" --fine_tune_batch_norm=False CUDA_VISIBLE_DEVICES=7 python eval.py --logtostderr --eval_split='val' --model_variant="nas_hnasnet" --atrous_rates=6 --atrous_rates=12 --atrous_rates=18 --output_stride=16 --decoder_output_stride=4 --dataset="cityscapes" --eval_crop_size="385,385" --checkpoint_dir="/workspace/models-master/cityscapes/checkpoint" --eval_logdir="/workspace/models-master/cityscapes/eval" --dataset_dir="/workspace/models-master/cityscapes/tfrecord" @tensorflowbutler
Have you solved the problem? Could you share the solution about this problem. I also met the problem.
Hello,I use auto-deeplab,such as hnasnet/pnasnet. But the result is always o.452439815 when I train 10000 steps / 30000 steps / 60000 steps, it still doesn't change. I want to know how can I deal with it.
What is the top-level directory of the model you are using: deeplab Have I written custom code: no OS Platform and Distribution:NVIDIA-SMI 410.104 Driver Version: 410.104 TensorFlow installed from:pip online TensorFlow version: tensorflow-gpu==1.10.0 Bazel version: CUDA/cuDNN version:10.0 GPU model and memory: name: Tesla V100-SXM2-16GB major: 7 minor: 0 memoryClockRate(GHz): 1.53
Have you solved the problem?
Cannot reproduce the results of hnasnet, neither. Following
Have you solved the problem?
Has anyone found a solution to the problem of mIOU not changing during training?
Hello,I use auto-deeplab,such as hnasnet/pnasnet. But the result is always o.452439815 when I train 10000 steps / 30000 steps / 60000 steps, it still doesn't change. I want to know how can I deal with it.
What is the top-level directory of the model you are using: deeplab Have I written custom code: no OS Platform and Distribution:NVIDIA-SMI 410.104 Driver Version: 410.104 TensorFlow installed from:pip online TensorFlow version: tensorflow-gpu==1.10.0 Bazel version: CUDA/cuDNN version:10.0 GPU model and memory: name: Tesla V100-SXM2-16GB major: 7 minor: 0 memoryClockRate(GHz): 1.53