Also, please understand that many of the models included in this repository are experimental and research-style code. If you open a GitHub issue, here is our policy:
It must be a bug, a feature request, or a significant problem with documentation (for small docs fixes please send a PR instead).
The form below must be filled out.
Here's why we have that policy: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.
System information
What is the top-level directory of the model you are using:models/research/object_detection/
Have I written custom code (as opposed to using a stock example script provided in TensorFlow):NO
OS Platform and Distribution (e.g., Linux Ubuntu 16.04):Windows-10(64bit)
TensorFlow installed from (source or binary):conda install tensorflow-gpu
TensorFlow version (use command below):1.13.1
Bazel version (if compiling from source):N/A
CUDA/cuDNN version:cudnn-7.6.0
GPU model and memory:GeForce GTX 1060 6GB
Exact command to reproduce:See below
You can collect some of this information using our environment capture script:
WARNING:tensorflow:Forced number of epochs for all eval validations to be 1.
WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs = 0. Overwriting num_epochs to 1.
WARNING:tensorflow:Estimator's model_fn (<function create_model_fn..model_fn at 0x0000027CBAB7BB70>) includes params argument, but params are not passed to Estimator.
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:86: parallel_interleave (from tensorflow.contrib.data.python.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.experimental.parallel_interleave(...).
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\core\preprocessor.py:196: sample_distorted_bounding_box (from tensorflow.python.ops.image_ops_impl) is deprecated and will be removed in a future version.
Instructions for updating:
seed2 arg is deprecated.Use sample_distorted_bounding_box_v2 instead.
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:158: batch_and_drop_remainder (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.batch(..., drop_remainder=True).
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\losses\losses_impl.py:448: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
2019-08-14 16:29:31.607841: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7845
pciBusID: 0000:04:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2019-08-14 16:29:31.621836: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-08-14 16:29:32.275712: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-08-14 16:29:32.283072: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-08-14 16:29:32.288675: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-08-14 16:29:32.293514: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1)
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\eval_util.py:796: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:498: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version.
Instructions for updating:
tf.py_func is deprecated in TF V2. Instead, use
tf.py_function, which takes a python function which manipulates tf eager
tensors instead of numpy arrays. It's easy to convert a tf eager tensor to
an ndarray (just call tensor.numpy()) but having access to eager tensors
means tf.py_functions can use accelerators such as GPUs as well as
being differentiable using a gradient tape.
2019-08-14 16:41:44.736212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-08-14 16:41:44.741242: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-08-14 16:41:44.747522: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-08-14 16:41:44.751256: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-08-14 16:41:44.755548: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1)
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type bbox
DONE (t=2.43s).
Accumulating evaluation results...
DONE (t=0.14s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.287
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.529
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.278
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.031
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.312
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.162
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.356
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.356
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.384
Please go to Stack Overflow for help and support:
http://stackoverflow.com/questions/tagged/tensorflow
Also, please understand that many of the models included in this repository are experimental and research-style code. If you open a GitHub issue, here is our policy:
Here's why we have that policy: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.
System information
You can collect some of this information using our environment capture script:
https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh
You can obtain the TensorFlow version with
python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Describe the problem
I was training the model, but ten minutes later, after an evaluation, the program exit, with no errors or warning.
Source code / logs
my command for training :
python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr
This is my config : `train_config { batch_size: 24 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } optimizer { rms_prop_optimizer { learning_rate { exponential_decay_learning_rate { initial_learning_rate: 0.00400000018999 decay_steps: 800720 decay_factor: 0.949999988079 } } momentum_optimizer_value: 0.899999976158 decay: 0.899999976158 epsilon: 1.0 } } fine_tune_checkpoint: "D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt" from_detection_checkpoint: true num_steps: 200000train_input_reader { label_map_path: "D:/gitcode/models/research/object_detection/idol/tf_label_map.pbtxt" tf_record_input_reader { input_path: "D:/gitcode/models/research/objectdetection/idol/train/Iframe??????.tfrecord" } } eval_config { num_examples: 8000 max_evals: 10 use_moving_averages: false } eval_input_reader { label_map_path: "D:/gitcode/models/research/object_detection/idol/tf_label_map.pbtxt" shuffle: false num_readers: 1 tf_record_input_reader { input_path: "D:/gitcode/models/research/objectdetection/idol/eval/Iframe??????.tfrecord" } ` This is my out log: ~ (default) D:\gitcode\models\research>python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:
WARNING:tensorflow:Forced number of epochs for all eval validations to be 1. WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered.model_fn at 0x0000027CBAB7BB70>) includes params argument, but params are not passed to Estimator.
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:86: parallel_interleave (from tensorflow.contrib.data.python.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use
eval_on_train_input_config.num_epochs
= 0. Overwritingnum_epochs
to 1. WARNING:tensorflow:Estimator's model_fn (<function create_model_fn.tf.data.experimental.parallel_interleave(...)
. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\core\preprocessor.py:196: sample_distorted_bounding_box (from tensorflow.python.ops.image_ops_impl) is deprecated and will be removed in a future version. Instructions for updating:seed2
arg is deprecated.Use sample_distorted_bounding_box_v2 instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:158: batch_and_drop_remainder (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version. Instructions for updating: Usetf.data.Dataset.batch(..., drop_remainder=True)
. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\losses\losses_impl.py:448: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. 2019-08-14 16:29:31.607841: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7845 pciBusID: 0000:04:00.0 totalMemory: 6.00GiB freeMemory: 4.97GiB 2019-08-14 16:29:31.621836: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-08-14 16:29:32.275712: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-08-14 16:29:32.283072: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-08-14 16:29:32.288675: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-08-14 16:29:32.293514: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1) WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\eval_util.py:796: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:498: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version. Instructions for updating: tf.py_func is deprecated in TF V2. Instead, use tf.py_function, which takes a python function which manipulates tf eager tensors instead of numpy arrays. It's easy to convert a tf eager tensor to an ndarray (just call tensor.numpy()) but having access to eager tensors meanstf.py_function
s can use accelerators such as GPUs as well as being differentiable using a gradient tape.2019-08-14 16:41:44.736212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-08-14 16:41:44.741242: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-08-14 16:41:44.747522: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-08-14 16:41:44.751256: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-08-14 16:41:44.755548: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1) WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. creating index... index created! creating index... index created! Running per image evaluation... Evaluate annotation type bbox DONE (t=2.43s). Accumulating evaluation results... DONE (t=0.14s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.287 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.529 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.278 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.031 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.312 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.162 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.356 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.356 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.384
(default) D:\gitcode\models\research> ~