Open airqj opened 4 years ago
The output looks like all the same value, can you verify if the inputs are correct on the device?
The output looks like all the same value, can you verify if the inputs are correct on the device?
the input is a png file on remote server. when set backend to cpu, the output on devtool and device is identical. and it is correct. my model is trained custom data based on efficientdet
To get help from the community, we encourage using Stack Overflow and the tensorflow.js tag.
TensorFlow.js version: 2.3.0 tfjs-wechat plugin version: 0.1.0 WeChat version: 7.0.18 WeChat base API version: 2.10.1 WeChat IDE version: 1.03.2006090 Describe the problem or feature request same input, in devtools work perfectly,but in android device ,the output is incorrect for example, in devtools,the output is
[[[23.666297912597656,921.23193359375,183.60040283203125,927.2606201171875],[15.292533874511719,1537.2786865234375,183.01553344726562,1543.4986572265625],[0.27048492431640625,305.4588928222656,183.98831176757812,312.1147766113281],[1.2694244384765625,1384.604248046875,186.19090270996094,1390.690185546875],[5.957794189453125,1064.868408203125,182.96878051757812,1071.165771484375],[11.017524719238281,224.19439697265625,185.01129150390625,230.95016479492188],[7.940696716308594,953.9198608398438,184.24075317382812,960.0391235351562],[6.575469970703125,688.0530395507812,184.0544891357422,694.9642944335938],[12.370758056640625,138.0717010498047,185.07872009277344,143.78099060058594],[11.984046936035156,832.9068603515625,181.735107421875,838.4112548828125],[0,1473.8946533203125,184.7564697265625,1480.3912353515625],[5.432441711425781,1233.8905029296875,183.02520751953125,1240.6072998046875],[8.294059753417969,795.270263671875,183.12899780273438,801.340087890625],[4.284919738769531,986.360107421875,175.13046264648438,992.528564453125],[16.285057067871094,599.8233642578125,182.50344848632812,606.190673828125],[4.934089660644531,1154.9400634765625,184.24420166015625,1161.1971435546875],[2.3918609619140625,406.9335021972656,181.7635955810547,413.1664123535156],[0.7287826538085938,1411.01318359375,182.46786499023438,1417.558349609375],[8.268196105957031,1626.1695556640625,183.573486328125,1631.8653564453125],[5.026954650878906,1737.0159912109375,186.707763671875,1745.3245849609375],[11.749588012695312,1727.8089599609375,184.548583984375,1736.1741943359375],[39.124656677246094,1713.540771484375,181.75552368164062,1718.755615234375],[20.725425720214844,10.743600845336914,204.57266235351562,16.622875213623047],[0,1310.3511962890625,185.74510192871094,1316.6363525390625],[7.2787017822265625,507.96319580078125,183.15560913085938,513.7721557617188],[7.469696044921875,1658.9466552734375,183.41920471191406,1671.5430908203125]]]
but in android device,the output is
[[[51.03124237060547,950.5,126.74998474121094,954.9999389648438],[51.03124237060547,950.5,126.74998474121094,954.9999389648438],[51.03124237060547,950.5,126.74998474121094,954.9999389648438],[51.03124237060547,950.5,126.74998474121094,954.9999389648438],[51.03124237060547,950.5,126.74998474121094,954.9999389648438],[51.03124237060547,950.5,126.74998474121094,954.9999389648438],[51.03124237060547,950.5,126.74998474121094,954.9999389648438]]]
Code to reproduce the bug / link to feature request
var result = await model.executeAsync({'image_arrays:0':batched},['detections:0']); result = tf.slice(result,[0,0,1],[1,-1,4]);