tensorlayer / TensorLayer

Deep Learning and Reinforcement Learning Library for Scientists and Engineers
http://tensorlayerx.com
Other
7.33k stars 1.61k forks source link

A problem when using tf.saved_model.save in tensorlayer2.x #1093

Open haowsun opened 4 years ago

haowsun commented 4 years ago

New Issue Checklist

Issue Description

When I using the function "tf.saved_model.save()" to save the model of MLP with TensorLayer2.2, I meet an ValueError .Does anyone know how to solve it or can I replace the function "tf.saved_model.save()" with another one ?

the model of MLP is from here

Reproducible Code

[INSERT CODE HERE]

import pprint
import time

import numpy as np
import tensorflow as tf

import tensorlayer as tl
from tensorlayer.layers import Dense, Dropout, Input
from tensorlayer.models import Model

tl.logging.set_verbosity(tl.logging.DEBUG)

X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784))

def get_model(inputs_shape):
    ni = Input(inputs_shape)
    nn = Dropout(keep=0.8)(ni)
    nn = Dense(n_units=800, act=tf.nn.relu)(nn)
    nn = Dropout(keep=0.8)(nn)
    nn = Dense(n_units=800, act=tf.nn.relu)(nn)
    nn = Dropout(keep=0.8)(nn)
    nn = Dense(n_units=10, act=tf.nn.relu)(nn)
    M = Model(inputs=ni, outputs=nn, name="mlp")
    return M

MLP = get_model([None, 784])
pprint.pprint(MLP.config)

n_epoch = 50
batch_size = 500
print_freq = 5
train_weights = MLP.trainable_weights
optimizer = tf.optimizers.Adam(lr=0.0001)

for epoch in range(n_epoch):
    start_time = time.time()
    for X_batch, y_batch in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True):
        MLP.train()
        with tf.GradientTape() as tape:
            _logits = MLP(X_batch)
            _loss = tl.cost.cross_entropy(_logits, y_batch, name='train_loss')
        grad = tape.gradient(_loss, train_weights)
        optimizer.apply_gradients(zip(grad, train_weights))

    if epoch + 1 == 1 or (epoch + 1) % print_freq == 0:
        MLP.eval()  # disable dropout
        print("Epoch {} of {} took {}".format(epoch + 1, n_epoch, time.time() - start_time))
        train_loss, train_acc, n_iter = 0, 0, 0
        for X_batch, y_batch in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=False):
            _logits = MLP(X_batch)
            train_loss += tl.cost.cross_entropy(_logits, y_batch, name='eval_loss')
            train_acc += np.mean(np.equal(np.argmax(_logits, 1), y_batch))
            n_iter += 1
        print("   train loss: {}".format(train_loss / n_iter))
        print("   train acc:  {}".format(train_acc / n_iter))

        val_loss, val_acc, n_iter = 0, 0, 0
        for X_batch, y_batch in tl.iterate.minibatches(X_val, y_val, batch_size, shuffle=False):
            _logits = MLP(X_batch)  # is_train=False, disable dropout
            val_loss += tl.cost.cross_entropy(_logits, y_batch, name='eval_loss')
            val_acc += np.mean(np.equal(np.argmax(_logits, 1), y_batch))
            n_iter += 1
        print("   val loss: {}".format(val_loss / n_iter))
        print("   val acc:  {}".format(val_acc / n_iter))

MLP.eval()
test_loss, test_acc, n_iter = 0, 0, 0
for X_batch, y_batch in tl.iterate.minibatches(X_test, y_test, batch_size, shuffle=False):
    _logits = MLP(X_batch)
    test_loss += tl.cost.cross_entropy(_logits, y_batch, name='test_loss')
    test_acc += np.mean(np.equal(np.argmax(_logits, 1), y_batch))
    n_iter += 1
print("   test loss: {}".format(test_loss / n_iter))
print("   test acc:  {}".format(test_acc / n_iter))

tf.saved_model.save(MLP, './save_model')

[Error] ValueError: Expected a Trackable object for export, got mlp( (_inputlayer_1): Input(shape=[None, 784], name='_inputlayer_1') (dropout_1): Dropout(keep=0.8, name='dropout_1') (dense_1): Dense(n_units=800, relu, in_channels='784', name='dense_1') (dropout_2): Dropout(keep=0.8, name='dropout_2') (dense_2): Dense(n_units=800, relu, in_channels='800', name='dense_2') (dropout_3): Dropout(keep=0.8, name='dropout_3') (dense_3): Dense(n_units=10, relu, in_channels='800', name='dense_3') ).

Laicheng0830 commented 4 years ago

MLP.save('./model.h5', save_weights=True)