Closed dlebauer closed 4 years ago
From the cultivar_files view query select * from cultivar_files limit 5;
:
plot_id | plot_name | season | file_id | folder | filename | format | sensor | start_time | finish_time | gantry_x | gantry_y | gantry_z | cultivar_name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6000013647 | MAC Field Scanner Season 6 Range 10 Column 1 E | MAC Season 6: Sorghum BAP | 1 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__10-45-41-991 | ea29e6ba-6868-42ce-a0cb-be81e3125735_left.bin | bin | stereoTop | 05/08/2018 10:45:41 | 05/08/2018 10:45:41 | 144.3005 | 4.991 | 0.87 | SP1516 |
6000013647 | MAC Field Scanner Season 6 Range 10 Column 1 E | MAC Season 6: Sorghum BAP | 2 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__10-45-41-991 | ea29e6ba-6868-42ce-a0cb-be81e3125735_metadata.json | json | stereoTop | 05/08/2018 10:45:41 | 05/08/2018 10:45:41 | 144.3005 | 4.991 | 0.87 | SP1516 |
6000013647 | MAC Field Scanner Season 6 Range 10 Column 1 E | MAC Season 6: Sorghum BAP | 3 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__10-45-41-991 | ea29e6ba-6868-42ce-a0cb-be81e3125735_right.bin | bin | stereoTop | 05/08/2018 10:45:41 | 05/08/2018 10:45:41 | 144.3005 | 4.991 | 0.87 | SP1516 |
6000013647 | MAC Field Scanner Season 6 Range 10 Column 1 E | MAC Season 6: Sorghum BAP | 4 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__10-33-42-852 | ca73a152-b9c9-48be-b717-56c75b2ab1c7_left.bin | bin | stereoTop | 05/08/2018 10:33:42 | 05/08/2018 10:33:42 | 153.3 | 21.509 | 0.869 | SP1516 |
6000013647 | MAC Field Scanner Season 6 Range 10 Column 1 E | MAC Season 6: Sorghum BAP | 5 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__10-33-42-852 | ca73a152-b9c9-48be-b717-56c75b2ab1c7_metadata.json | json | stereoTop | 05/08/2018 10:33:42 | 05/08/2018 10:33:42 | 153.3 | 21.509 | 0.869 | SP1516 |
From the weather_files view query select * from weather_files where file_id is not null limit 5;
:
timestamp | temperature | illuminance | precipitation | sun_direction | wind_speed | wind_direction | relative_humidity | file_id | folder | filename | format | sensor | start_time | finish_time | gantry_x | gantry_y | gantry_z |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018.05.08-09:19:30 | 28.6727500229 | 200.0 | 0.0956064333 | 99.8907437361 | 1.9263283181 | 187.9158909879 | 17.3711355937 | 7240 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__09-19-34-515 | 2171e7e3-b42a-472b-81b8-a67312f37f2f_metadata.json | json | stereoTop | 05/08/2018 09:19:34 | 05/08/2018 09:19:34 | 207.299 | 0.001 | 0.87 |
2018.05.08-09:19:30 | 28.6727500229 | 200.0 | 0.0956064333 | 99.8907437361 | 1.9263283181 | 187.9158909879 | 17.3711355937 | 7241 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__09-19-34-515 | 2171e7e3-b42a-472b-81b8-a67312f37f2f_right.bin | bin | stereoTop | 05/08/2018 09:19:34 | 05/08/2018 09:19:34 | 207.299 | 0.001 | 0.87 |
2018.05.08-09:19:30 | 28.6727500229 | 200.0 | 0.0956064333 | 99.8907437361 | 1.9263283181 | 187.9158909879 | 17.3711355937 | 7242 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__09-19-34-515 | 2171e7e3-b42a-472b-81b8-a67312f37f2f_left.bin | bin | stereoTop | 05/08/2018 09:19:34 | 05/08/2018 09:19:34 | 207.299 | 0.001 | 0.87 |
2018.05.08-09:19:35 | 28.6819055757 | 200.0 | 0.0956064333 | 100.0006103702 | 2.5012970367 | 200.2868739891 | 17.2795800653 | 7240 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__09-19-34-515 | 2171e7e3-b42a-472b-81b8-a67312f37f2f_metadata.json | json | stereoTop | 05/08/2018 09:19:34 | 05/08/2018 09:19:34 | 207.299 | 0.001 | 0.87 |
2018.05.08-09:19:35 | 28.6819055757 | 200.0 | 0.0956064333 | 100.0006103702 | 2.5012970367 | 200.2868739891 | 17.2795800653 | 7241 | /ua-mac/raw_data/stereoTop/2018-05-08/2018-05-08__09-19-34-515 | 2171e7e3-b42a-472b-81b8-a67312f37f2f_right.bin | bin | stereoTop | 05/08/2018 09:19:34 | 05/08/2018 09:19:34 | 207.299 | 0.001 | 0.87 |
ML group would like to be able to query a list of files by
- season (required unless date is provided)
- date
When querying by date, keep in mind that data entered through the v1 API stores date-times at UTC time based on the local time at which the data was collected, the site at which it was collected, and the time zone stored for the site at which it was collected. For dateloc values other than 5 and timeloc values other than 1, there are certain conventions for normalizing the representation of the "approximate" date and time. This isn't much of an issue for the TERRA-REF database since all currently-stored traits have a dateloc value of 5 and a timeloc value of 1 (precise to the second) or 9 (no time-of-day data). Keep in mind that the date_year
, date_month
, date_day
, time_hour
, and time_minute
columns are obsolescent and shouldn't be used. The v1 API doesn't use them but unfortunately the Web interface still does. So you won't see any date/time information on the Web page for any trait added via the v1 API. (There is precisely one trait row in the TERRA-REF database with non-null date_year
, date_month
, and date_day
: see https://terraref.ncsa.illinois.edu/bety/traits/6001892300.)
This is one of those issues that never bubbled to the top of my priority queue and so never got fully resolved. It's a somewhat messy issue and was especially messy with the EBI database in which the date-time data stored was a muddled mess of different conventions. I can point you to the relevant issues which lay out the precise conventions for storing data/time data if you are interested.
@gsrohde thanks for this reminder! I think in this case we are not dealing with the traits table - only associating metadata with files. So hopefully we don't run into an error here!
@Chris-Schnaufer
Desired changes:
@gsrohde thanks for this reminder! I think in this case we are not dealing with the traits table - only associating metadata with files. So hopefully we don't run into an error here!
Still, for any table that uses any of the date or time or timestamp types, you need to decide how the raw database value should be interpreted and make sure all software that sets or reads a column having one of these types conforms to whatever convention you have adopted. And you should document that convention somewhere. You also, of course, need to know what convention any input data used.
The sample SQLite DB: https://drive.google.com/file/d/1VyPtQYcj5xaaB7OUB6UILNd9It3tfgeD/view?usp=sharing
The unified
table in the SQLite database has all the fields making it easy to query for the files desired
file_id | folder | filename | format | sensor | start_time | finish_time | gantry_x | gantry_y | gantry_z | plot_id | plot_name | season | plot_bb_min_lat | plot_bb_min_lon | plot_bb_max_lat | plot_bb_max_lon | cultivar_name | Sobic_006G057866_1_40312463 | Sobic_006G147400_1_50898459 | Sobic_006G147400_1_50898536 | Sobic_006G067700_1_42805319 | Sobic_006G147400_1_50898315 | Sobic_006G067700_1_42804037 | Sobic_001G269200_1_51588525 | Sobic_001G269200_1_51588838 | Sobic_001G269200_1_51589143 | Sobic_006G147400_1_50898231 | Sobic_009G229800_1_57040680 | Sobic_001G269200_1_51589435 | Sobic_006G147400_1_50898523 | Sobic_006G147400_1_50898525 | Sobic_006G004400_2_2697734 | weather_timestamp | temperature | illuminance | precipitation | sun_direction | wind_speed | wind_direction | relative_humidity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | /ua-mac/Level_1_Plots/rgb_geotiff/2018-05-08/MAC Field Scanner Season 6 Range 10 Column 1 | rgb_geotiff_L1_ua-mac_2018-05-08__13-10-45-826_left.tif | tif | RGB | 05/08/2018 13:10:45 | 05/08/2018 13:10:45 | 37.3 | 21.013 | 0.869 | 6000014550 | MAC Field Scanner Season 6 Range 10 Column 1 | MAC Season 6: Sorghum BAP | 33.0748552864667 | -111.975055859446 | 33.0748868595077 | -111.975039475766 | SP1516 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2018.05.08-13:10:44 | 36.7357402264 | 200.0 | 0.1017100742 | 217.7117221595 | 3.5322122868 | 198.2433545946 | 8.966338084 |
2 | /ua-mac/Level_1_Plots/rgb_geotiff/2018-05-08/MAC Field Scanner Season 6 Range 10 Column 1 | rgb_geotiff_L1_ua-mac_2018-05-08__13-10-45-826_right.tif | tif | RGB | 05/08/2018 13:10:45 | 05/08/2018 13:10:45 | 37.3 | 21.013 | 0.869 | 6000014550 | MAC Field Scanner Season 6 Range 10 Column 1 | MAC Season 6: Sorghum BAP | 33.0748552864667 | -111.975055859446 | 33.0748868595077 | -111.975039475766 | SP1516 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2018.05.08-13:10:44 | 36.7357402264 | 200.0 | 0.1017100742 | 217.7117221595 | 3.5322122868 | 198.2433545946 | 8.966338084 |
3 | /ua-mac/Level_1_Plots/rgb_geotiff/2018-05-08/MAC Field Scanner Season 6 Range 10 Column 1 | rgb_geotiff_L1_ua-mac_2018-05-08__13-10-47-436_left.tif | tif | RGB | 05/08/2018 13:10:45 | 05/08/2018 13:10:45 | 37.3 | 21.013 | 0.869 | 6000014550 | MAC Field Scanner Season 6 Range 10 Column 1 | MAC Season 6: Sorghum BAP | 33.0748552864667 | -111.975055859446 | 33.0748868595077 | -111.975039475766 | SP1516 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2018.05.08-13:10:44 | 36.7357402264 | 200.0 | 0.1017100742 | 217.7117221595 | 3.5322122868 | 198.2433545946 | 8.966338084 |
4 | /ua-mac/Level_1_Plots/rgb_geotiff/2018-05-08/MAC Field Scanner Season 6 Range 10 Column 1 | rgb_geotiff_L1_ua-mac_2018-05-08__13-10-47-436_right.tif | tif | RGB | 05/08/2018 13:10:45 | 05/08/2018 13:10:45 | 37.3 | 21.013 | 0.869 | 6000014550 | MAC Field Scanner Season 6 Range 10 Column 1 | MAC Season 6: Sorghum BAP | 33.0748552864667 | -111.975055859446 | 33.0748868595077 | -111.975039475766 | SP1516 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2018.05.08-13:10:44 | 36.7357402264 | 200.0 | 0.1017100742 | 217.7117221595 | 3.5322122868 | 198.2433545946 | 8.966338084 |
5 | /ua-mac/Level_1_Plots/rgb_geotiff/2018-05-08/MAC Field Scanner Season 6 Range 10 Column 1 | rgb_geotiff_L1_ua-mac_2018-05-08__13-10-49-116_left.tif | tif | RGB | 05/08/2018 13:10:45 | 05/08/2018 13:10:45 | 37.3 | 21.013 | 0.869 | 6000014550 | MAC Field Scanner Season 6 Range 10 Column 1 | MAC Season 6: Sorghum BAP | 33.0748552864667 | -111.975055859446 | 33.0748868595077 | -111.975039475766 | SP1516 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2018.05.08-13:10:44 | 36.7357402264 | 200.0 | 0.1017100742 | 217.7117221595 | 3.5322122868 | 198.2433545946 | 8.966338084 |
implemented in https://github.com/AgPipeline/issues-and-projects/issues/146
ML group would like to be able to query a list of files by
genotypic information (data TBD)boolean for \~10 loci for each cultivarIn the end, this requires a table that can easily be queried to return a list of files associated with multiple parameters
This is an example of a json file that is currently used by the group to describe an associated file see also: https://docs.google.com/document/d/1iW7GhrzGOV0_ZRZOIUk-hbh7MsenO9I4kMbmqWvjN2c/edit
Proposed tables
files
experimental info
cultivars
weather (can be joined to files as needed given file start/end time and gantry x, y)
Views
Minimal viable product
First two tables: files and experiment info and a view that joins these two tables and can be queried
Questions