Closed Phantomb closed 6 years ago
dtype_int in a2c's sample_action should be of type FloatTensor instead of LongTensor else a2c throws the following error:
dtype_int
sample_action
FloatTensor
LongTensor
(C:\Anaconda3) C:\Github_Repos\tessler_Malmo>python main.py a2c single_room --number_of_agents 2 --malmo_ports 10000 10001 --retain_rgb --save_name a2c-test 2018-02-09 10:49:34 INFO: To view results, run 'python -m visdom.server' 2018-02-09 10:49:34 INFO: then head over to http://localhost:8097 2018-02-09 10:49:46 CRITICAL: Agent[0]: _load_mission_from_xml, Error starting mission 2018-02-09 10:49:47 CRITICAL: Agent[0]: _load_mission_from_xml, Error starting mission 2018-02-09 10:49:48 CRITICAL: Agent[0]: _load_mission_from_xml, Error starting mission 2018-02-09 10:49:48 CRITICAL: Agent[0]: _load_mission_from_xml, Error starting mission 2018-02-09 10:49:49 CRITICAL: Agent[0]: _load_mission_from_xml, Error starting mission 2018-02-09 10:49:50 CRITICAL: Agent[0]: _load_mission_from_xml, Error starting mission 2018-02-09 10:49:50 CRITICAL: Agent[0]: _load_mission_from_xml, Error starting mission Traceback (most recent call last): File "main.py", line 79, in <module> True) File "C:\Github_Repos\tessler_Malmo\utilities\helpers.py", line 52, in play_full_episode action = policy.get_action(states, is_train) File "C:\Github_Repos\tessler_Malmo\policies\a2c.py", line 44, in get_action actions = self.sample_action() File "C:\Github_Repos\tessler_Malmo\policies\a2c.py", line 57, in sample_action probs, _, _ = self.target_model((Variable(torch_state))) File "C:\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 325, in __call__ result = self.forward(*input, **kwargs) File "C:\Github_Repos\tessler_Malmo\policies\models\actor_critic.py", line 37, in forward x = self.feature_extractor(inputs) File "C:\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 325, in __call__ result = self.forward(*input, **kwargs) File "C:\Anaconda3\lib\site-packages\torch\nn\modules\container.py", line 67, in forward input = module(input) File "C:\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 325, in __call__ result = self.forward(*input, **kwargs) File "C:\Anaconda3\lib\site-packages\torch\nn\modules\conv.py", line 277, in forward self.padding, self.dilation, self.groups) File "C:\Anaconda3\lib\site-packages\torch\nn\functional.py", line 90, in conv2d return f(input, weight, bias) RuntimeError: Input type (CUDALongTensor) and weight type (CUDAFloatTensor) should be the same
Sorry, forgot to push some fixes on my end. See: 81ff69cedfa04286f467911f323210bae60541f4 Fixed dtype issue. Added target network for a more stable convergence.
Thanks again!
dtype_int
in a2c'ssample_action
should be of typeFloatTensor
instead ofLongTensor
else a2c throws the following error: