thetensor-space / StarAlge

Algorithms for rings with involutions
MIT License
1 stars 1 forks source link

Recognize Star Algebra #2

Open joshmaglione opened 6 years ago

joshmaglione commented 6 years ago

There seems to be an issue with RecognizeStarAlgebra. Here's what I got.

> s;
Tensor of valence 3, U2 x U1 >-> U0
U2 : Full Vector space of degree 8 over GF(5)
U1 : Full Vector space of degree 8 over GF(5)
U0 : Full Vector space of degree 2 over GF(5)
> IsFullyNondegenerate(s);
true
> A := AdjointAlgebra(s);
> A;
Matrix Algebra of degree 8 and dimension 16 with 16 generators over GF(5)
> RecognizeStarAlgebra(A);

RecognizeStarAlgebra(
    A: Matrix Algebra of degree 8 and dimension 16 with 16 generato...
)
RecogniseStarAlgebra(
    A: Matrix Algebra of degree 8 and dimension 16 with 16 generato...
)
RecogniseClassicalSSA(
    S: Matrix Algebra of degree 8 and dimension 8 with 8 generators...
)
SimpleStarAlgebra(
    name: orthogonalminus,
    d: 2,
    K: GF(5^2)
)
MySimpleStarAlgebra(
    name: orthogonalminus,
    d: 2,
    K: GF(5^2)
)
GeneralOrthogonalGroupMinus(
    d: 2,
    K: GF(5^2)
)
In file "/usr/local/magma/package/Group/GrpMat/Classical/group.m", line 232, 
column 18:
>>   G := ChangeRing( G, K );
                    ^
Runtime error in 'ChangeRing': Cannot coerce element from source coefficent ring
into the destination coefficient ring

The tensor is given by the following structure constants.

Tensor(GF(5), \[ 8, 8, 2 ], [ GF(5) | 1, 1, 0, 1, 3, 4, 2, 3, 3, 3, 2, 3, 1, 0, 
0, 1, 0, 1, 3, 4, 2, 3, 3, 3, 2, 3, 1, 0, 0, 1, 3, 4, 3, 4, 2, 3, 3, 3, 2, 3, 1,
0, 0, 1, 3, 4, 4, 4, 2, 3, 3, 3, 2, 3, 1, 0, 0, 1, 3, 4, 4, 4, 2, 1, 3, 3, 2, 3,
1, 0, 0, 1, 3, 4, 4, 4, 2, 1, 4, 4, 2, 3, 1, 0, 0, 1, 3, 4, 4, 4, 2, 1, 4, 4, 1,
3, 1, 0, 0, 1, 3, 4, 4, 4, 2, 1, 4, 4, 1, 3, 4, 4, 0, 1, 3, 4, 4, 4, 2, 1, 4, 4,
1, 3, 4, 4, 2, 1 ], TensorCategory(\[ 1, 1, 1 ], { PowerSet(IntegerRing()) |
{ IntegerRing() | 0, 1, 2 }}))