Closed tiangexiang closed 7 months ago
Can you provide the full code of local_inference.py
?
import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse
from model import CRM
from inference import generate3d
pipeline = None
rembg_session = rembg.new_session()
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
# expand image to 1:1
width, height = image.size
if width == height:
return image
new_size = (max(width, height), max(width, height))
new_image = Image.new("RGBA", new_size, bg_color)
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
new_image.paste(image, paste_position)
return new_image
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def remove_background(
image: PIL.Image.Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def do_resize_content(original_image: Image, scale_rate):
# resize image content wile retain the original image size
if scale_rate != 1:
# Calculate the new size after rescaling
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
# Resize the image while maintaining the aspect ratio
resized_image = original_image.resize(new_size)
# Create a new image with the original size and black background
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
return padded_image
else:
return original_image
def add_background(image, bg_color=(255, 255, 255)):
# given an RGBA image, alpha channel is used as mask to add background color
background = Image.new("RGBA", image.size, bg_color)
return Image.alpha_composite(background, image)
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
"""
input image is a pil image in RGBA, return RGB image
"""
print(background_choice)
if background_choice == "Alpha as mask":
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
else:
image = remove_background(image, rembg_session, force_remove=True)
image = do_resize_content(image, foreground_ratio)
image = expand_to_square(image)
image = add_background(image, backgroud_color)
return image.convert("RGB")
def gen_image(input_image, seed, scale, step):
global pipeline, model, args
pipeline.set_seed(seed)
rt_dict = pipeline(input_image, scale=scale, step=step)
stage1_images = rt_dict["stage1_images"]
stage2_images = rt_dict["stage2_images"]
np_imgs = np.concatenate(stage1_images, 1)
np_xyzs = np.concatenate(stage2_images, 1)
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, args.device)
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path, obj_path
parser = argparse.ArgumentParser()
parser.add_argument(
"--stage1_config",
type=str,
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
help="config for stage1",
)
parser.add_argument(
"--stage2_config",
type=str,
default="configs/stage2-v2-snr.yaml",
help="config for stage2",
)
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
#crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
crm_path = '.../CRM.pth'
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs).to(args.device)
model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)
stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler
stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models
#xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
#pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
xyz_path = '.../ccm-diffusion.pth'
pixel_path = '.../pixel-diffusion.pth'
stage1_model_config.resume = xyz_path
stage2_model_config.resume = pixel_path
pipeline = TwoStagePipeline(
stage1_model_config,
stage2_model_config,
stage1_sampler_config,
stage2_sampler_config,
device=args.device,
dtype=torch.float16
)
image_path = '.../demo_img.png'
image_input = PIL.Image.open(image_path)
preprocessed_image = preprocess_image(image_input, "Alpha as mask", 1.0, "#7F7F7F")
novel_views, ccms, glb_path, obj_path = gen_image(preprocessed_image, 1234, 0.55, 30)
I didn't modify the codes too much actually. Thanks
The code
stage1_model_config.resume = xyz_path
stage2_model_config.resume = pixel_path
should be changed into the following code?
stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path
Thanks for your reply! Interesting, so the checkpoints do need to be swapped. Although the models can be loaded in this way, but I cannot get same output quality as the ones from HF gradio. Do you have any suggestions?
Can I see your your 3D result? Also, pixel diffusion is for stage1 and xyz diffusion is for stage2. There is no swap.
I have tried two separate runs and got very different novel view generation results:
The last colume is your input image? I think the problem results from the unclean background? We assume that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.
Oh not exactly, here is the preprocessed image: So you are suggesting the preprocessed image may be wrongly passed to the generation pipeline? Thanks!
Yes, the preprocessed image may be wrongly passed to the generation pipeline. The last image should be exactly the same as the preprocessed image.
Thanks for your awesome work and contribution! I tried to run your codes locally after downloading model checkpoints from huggingface, but I encountered a size mismatch error when doing so:
Interestingly, when I swap the checkpoints for ccm_diffusion and pixel_diffusion, both loading and inference work pretty well. But the results are definitely not correct after swapping the checkpoints.
I have not changed anything to the codes.