thuiar / Self-MM

Codes for paper "Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis"
MIT License
191 stars 37 forks source link

Question about the results in the paper #2

Closed NicholasGote closed 3 years ago

NicholasGote commented 3 years ago

Hi @iyuge2 ,

It's me again. I just read your wonderful paper on AAAI 2021 entitled "Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis".

I noticed that the results reported on that paper are better than the results listed in the 'MMSA/results/result-stat.md' table. I am curious why this happened. Are you using different hyperparameters of features?

Thanks for your time.

NicholasGote commented 3 years ago

Solved. The results are from another paper.

iyuge2 commented 3 years ago

Hi @NicholasGote,

It is a great question!

Results listed in the MMSA/results/result-stat.md are reproduced under the same tuning and running settings. First, we tried 50 sets of parameters for each model on the same dataset with grid search. Then the parameters with best performance in validation set are selected as the final one.

Unfortunately, we lost the original parameters in our paper when we re-run all models and datasets. But you can try the following parameters, which can get comparable or better results than our work in AAAI 2021.

Thank you!

def __SELF_MM(self):
    tmp = {
        'commonParas':{
            'need_data_aligned': False,
            'need_model_aligned': False,
            'need_normalized': False,
            'use_bert': True,
            'use_finetune': True,
            'save_labels': False,
            'early_stop': 8,
            'update_epochs': 4
        },
        # dataset
        'datasetParas':{
            'mosi':{
                # the batch_size of each epoch is update_epochs * batch_size
                'batch_size': 16,
                'learning_rate_bert': 5e-5,
                'learning_rate_audio': 0.005,
                'learning_rate_video': 0.005,
                'learning_rate_other': 0.001,
                'weight_decay_bert': 0.001,
                'weight_decay_audio': 0.001,
                'weight_decay_video': 0.001,
                'weight_decay_other': 0.001,
                # feature subNets
                'a_lstm_hidden_size': 16,
                'v_lstm_hidden_size': 32,
                'a_lstm_layers': 1,
                'v_lstm_layers': 1,
                'text_out': 768, 
                'audio_out': 16,
                'video_out': 32, 
                'a_lstm_dropout': 0.0,
                'v_lstm_dropout': 0.0,
                't_bert_dropout':0.1,
                # post feature
                'post_fusion_dim': 128,
                'post_text_dim':32,
                'post_audio_dim': 16,
                'post_video_dim': 32,
                'post_fusion_dropout': 0.0,
                'post_text_dropout': 0.1,
                'post_audio_dropout': 0.1,
                'post_video_dropout': 0.0,
                # res
                'H': 3.0
            },
            'mosei':{
                # the batch_size of each epoch is update_epochs * batch_size
                'batch_size': 32,
                'learning_rate_bert': 5e-5,
                'learning_rate_audio': 0.005,
                'learning_rate_video': 1e-4,
                'learning_rate_other': 1e-3,
                'weight_decay_bert': 0.001,
                'weight_decay_audio': 0.0,
                'weight_decay_video': 0.0,
                'weight_decay_other': 0.01,
                # feature subNets
                'a_lstm_hidden_size': 16,
                'v_lstm_hidden_size': 32,
                'a_lstm_layers': 1,
                'v_lstm_layers': 1,
                'text_out': 768, 
                'audio_out': 16,
                'video_out': 32, 
                'a_lstm_dropout': 0.0,
                'v_lstm_dropout': 0.0,
                't_bert_dropout':0.1,
                # post feature
                'post_fusion_dim': 128,
                'post_text_dim':32,
                'post_audio_dim': 16,
                'post_video_dim': 32,
                'post_fusion_dropout': 0.1,
                'post_text_dropout': 0.0,
                'post_audio_dropout': 0.0,
                'post_video_dropout': 0.0,
                # res
                'H': 3.0
            },
            'sims':{
                # the batch_size of each epoch is update_epochs * batch_size
                'batch_size': 32,
                'learning_rate_bert': 5e-5,
                'learning_rate_audio': 5e-3,
                'learning_rate_video': 5e-3,
                'learning_rate_other': 1e-3,
                'weight_decay_bert': 0.001,
                'weight_decay_audio': 0.01,
                'weight_decay_video': 0.01,
                'weight_decay_other': 0.001,
                # feature subNets
                'a_lstm_hidden_size': 16,
                'v_lstm_hidden_size': 64,
                'a_lstm_layers': 1,
                'v_lstm_layers': 1,
                'text_out': 768, 
                'audio_out': 16,
                'video_out': 32, 
                'a_lstm_dropout': 0.0,
                'v_lstm_dropout': 0.0,
                't_bert_dropout':0.1,
                # post feature
                'post_fusion_dim': 128,
                'post_text_dim':64,
                'post_audio_dim': 16,
                'post_video_dim': 32,
                'post_fusion_dropout': 0.0,
                'post_text_dropout': 0.1,
                'post_audio_dropout': 0.1,
                'post_video_dropout': 0.0,
                # res
                'H': 1.0
            },
        },
    }
    return tmp