Closed gittigxuy closed 5 years ago
Here is my log file: OS: Ubuntu 16.04.5 LTS GCC version: (Ubuntu 5.4.0-6ubuntu1~16.04.11) 5.4.0 20160609 CMake version: Could not collect
Python version: 3.6 Is CUDA available: Yes CUDA runtime version: 10.0.130 GPU models and configuration: GPU 0: GeForce RTX 2080 Ti GPU 1: GeForce RTX 2080 Ti
Nvidia driver version: 410.48 cuDNN version: Probably one of the following: /usr/local/cuda-10.0/targets/x86_64-linux/lib/libcudnn.so.7.4.1 /usr/local/cuda-10.0/targets/x86_64-linux/lib/libcudnn_static.a
Versions of relevant libraries:
[pip] Could not collect
[conda] torch 1.0.0
TRAIN: ("coco_citypersons_train", ) TEST: ("coco_citypersons_val",) INPUT: MIN_SIZE_RANGE_TRAIN: (640, 800) MAX_SIZE_TRAIN: 1333 MIN_SIZE_TEST: 800 MAX_SIZE_TEST: 1333 DATALOADER: SIZE_DIVISIBILITY: 32 SOLVER: BASE_LR: 0.01 WEIGHT_DECAY: 0.0001 STEPS: (120000, 160000) MAX_ITER: 180000 IMS_PER_BATCH: 16 WARMUP_METHOD: "constant"
2019-05-04 00:17:09,223 maskrcnn_benchmark INFO: Running with config: DATALOADER: ASPECT_RATIO_GROUPING: True NUM_WORKERS: 4 SIZE_DIVISIBILITY: 32 DATASETS: TEST: ('coco_citypersons_val',) TRAIN: ('coco_citypersons_train',) INPUT: MAX_SIZE_TEST: 1333 MAX_SIZE_TRAIN: 1333 MIN_SIZE_RANGE_TRAIN: (640, 800) MIN_SIZE_TEST: 800 MIN_SIZE_TRAIN: (800,) PIXEL_MEAN: [102.9801, 115.9465, 122.7717] PIXEL_STD: [1.0, 1.0, 1.0] TO_BGR255: True MODEL: BACKBONE: CONV_BODY: R-101-FPN-RETINANET FREEZE_CONV_BODY_AT: 2 USE_GN: False CLS_AGNOSTIC_BBOX_REG: False DEVICE: cuda FBNET: ARCH: default ARCH_DEF: BN_TYPE: bn DET_HEAD_BLOCKS: [] DET_HEAD_LAST_SCALE: 1.0 DET_HEAD_STRIDE: 0 DW_CONV_SKIP_BN: True DW_CONV_SKIP_RELU: True KPTS_HEAD_BLOCKS: [] KPTS_HEAD_LAST_SCALE: 0.0 KPTS_HEAD_STRIDE: 0 MASK_HEAD_BLOCKS: [] MASK_HEAD_LAST_SCALE: 0.0 MASK_HEAD_STRIDE: 0 RPN_BN_TYPE: RPN_HEAD_BLOCKS: 0 SCALE_FACTOR: 1.0 WIDTH_DIVISOR: 1 FCOS: FPN_STRIDES: [8, 16, 32, 64, 128] INFERENCE_TH: 0.05 LOSS_ALPHA: 0.25 LOSS_GAMMA: 2.0 NMS_TH: 0.4 NUM_CLASSES: 2 NUM_CONVS: 4 PRE_NMS_TOP_N: 1000 PRIOR_PROB: 0.01 FCOS_ON: True FPN: USE_GN: False USE_RELU: False GROUP_NORM: DIM_PER_GP: -1 EPSILON: 1e-05 NUM_GROUPS: 32 KEYPOINT_ON: False MASK_ON: False META_ARCHITECTURE: GeneralizedRCNN RESNETS: BACKBONE_OUT_CHANNELS: 256 NUM_GROUPS: 1 RES2_OUT_CHANNELS: 256 RES5_DILATION: 1 STEM_FUNC: StemWithFixedBatchNorm STEM_OUT_CHANNELS: 64 STRIDE_IN_1X1: True TRANS_FUNC: BottleneckWithFixedBatchNorm WIDTH_PER_GROUP: 64 RETINANET: ANCHOR_SIZES: (32, 64, 128, 256, 512) ANCHOR_STRIDES: (8, 16, 32, 64, 128) ASPECT_RATIOS: (0.5, 1.0, 2.0) BBOX_REG_BETA: 0.11 BBOX_REG_WEIGHT: 4.0 BG_IOU_THRESHOLD: 0.4 FG_IOU_THRESHOLD: 0.5 INFERENCE_TH: 0.05 LOSS_ALPHA: 0.25 LOSS_GAMMA: 2.0 NMS_TH: 0.4 NUM_CLASSES: 2 NUM_CONVS: 4 OCTAVE: 2.0 PRE_NMS_TOP_N: 1000 PRIOR_PROB: 0.01 SCALES_PER_OCTAVE: 3 STRADDLE_THRESH: 0 USE_C5: False RETINANET_ON: False ROI_BOX_HEAD: CONV_HEAD_DIM: 256 DILATION: 1 FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor MLP_HEAD_DIM: 1024 NUM_CLASSES: 2 NUM_STACKED_CONVS: 4 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_SCALES: (0.0625,) PREDICTOR: FastRCNNPredictor USE_GN: False ROI_HEADS: BATCH_SIZE_PER_IMAGE: 512 BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) BG_IOU_THRESHOLD: 0.5 DETECTIONS_PER_IMG: 100 FG_IOU_THRESHOLD: 0.5 NMS: 0.5 POSITIVE_FRACTION: 0.25 SCORE_THRESH: 0.05 USE_FPN: False ROI_KEYPOINT_HEAD: CONV_LAYERS: (512, 512, 512, 512, 512, 512, 512, 512) FEATURE_EXTRACTOR: KeypointRCNNFeatureExtractor MLP_HEAD_DIM: 1024 NUM_CLASSES: 17 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_SCALES: (0.0625,) PREDICTOR: KeypointRCNNPredictor RESOLUTION: 14 SHARE_BOX_FEATURE_EXTRACTOR: True ROI_MASK_HEAD: CONV_LAYERS: (256, 256, 256, 256) DILATION: 1 FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor MLP_HEAD_DIM: 1024 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_SCALES: (0.0625,) POSTPROCESS_MASKS: False POSTPROCESS_MASKS_THRESHOLD: 0.5 PREDICTOR: MaskRCNNC4Predictor RESOLUTION: 14 SHARE_BOX_FEATURE_EXTRACTOR: True USE_GN: False RPN: ANCHOR_SIZES: (32, 64, 128, 256, 512) ANCHOR_STRIDE: (16,) ASPECT_RATIOS: (0.5, 1.0, 2.0) BATCH_SIZE_PER_IMAGE: 256 BG_IOU_THRESHOLD: 0.3 FG_IOU_THRESHOLD: 0.7 FPN_POST_NMS_TOP_N_TEST: 2000 FPN_POST_NMS_TOP_N_TRAIN: 1000 MIN_SIZE: 0 NMS_THRESH: 0.7 POSITIVE_FRACTION: 0.5 POST_NMS_TOP_N_TEST: 1000 POST_NMS_TOP_N_TRAIN: 2000 PRE_NMS_TOP_N_TEST: 6000 PRE_NMS_TOP_N_TRAIN: 12000 RPN_HEAD: SingleConvRPNHead STRADDLE_THRESH: 0 USE_FPN: False RPN_ONLY: True WEIGHT: catalog://ImageNetPretrained/MSRA/R-101 OUTPUT_DIR: training_dir/FCOS_0503 PATHS_CATALOG: /home/abc/code/FCOS/maskrcnn_benchmark/config/paths_catalog.py SOLVER: BASE_LR: 0.01 BIAS_LR_FACTOR: 2 CHECKPOINT_PERIOD: 2500 GAMMA: 0.1 IMS_PER_BATCH: 16 MAX_ITER: 180000 MOMENTUM: 0.9 STEPS: (120000, 160000) WARMUP_FACTOR: 0.3333333333333333 WARMUP_ITERS: 500 WARMUP_METHOD: constant WEIGHT_DECAY: 0.0001 WEIGHT_DECAY_BIAS: 0 TEST: DETECTIONS_PER_IMG: 100 EXPECTED_RESULTS: [] EXPECTED_RESULTS_SIGMA_TOL: 4 IMS_PER_BATCH: 8
@gittigxuy It seems that you are using another dataset. Did R-101 work normally with COCO?
no,it encounter same problem when I run coco2014 with resnet101,could you please tell me how to fix the code?
@gittigxuy Are you using the latest version? I have tested it with R-101 and it works normally with coco.
yes,I git from your April 12 th version,I could not deal with the problem.I also git the newest code but the same problem.what should I do?thanks
@gittigxuy We are sorry. It was a bug and has been fixed. Please use the latest code.
Thanks,fix the bug
2019-05-04 00:17:28,682 maskrcnn_benchmark.trainer INFO: Start training Traceback (most recent call last): File "tools/train_net.py", line 189, in
main()
File "tools/train_net.py", line 182, in main
model = train(cfg, args.local_rank, args.distributed)
File "tools/train_net.py", line 87, in train
arguments,
File "/home/abc/code/FCOS/maskrcnn_benchmark/engine/trainer.py", line 56, in dotrain
for iteration, (images, targets, ) in enumerate(data_loader, start_iter):
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 637, in next
return self._process_next_batch(batch)
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 658, in _process_next_batch
raise batch.exc_type(batch.exc_msg)
TypeError: Traceback (most recent call last):
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/datasets/coco.py", line 94, in getitem
img, target = self.transforms(img, target)
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/transforms/transforms.py", line 15, in call
image, target = t(image, target)
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/transforms/transforms.py", line 58, in call
size = self.get_size(image.size)
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/transforms/transforms.py", line 42, in get_size
if max_original_size / min_original_size size > max_size:
TypeError: unsupported operand type(s) for : 'float' and 'range'
Traceback (most recent call last): File "tools/train_net.py", line 189, in
main()
File "tools/train_net.py", line 182, in main
model = train(cfg, args.local_rank, args.distributed)
File "tools/train_net.py", line 87, in train
arguments,
File "/home/abc/code/FCOS/maskrcnn_benchmark/engine/trainer.py", line 56, in dotrain
for iteration, (images, targets, ) in enumerate(data_loader, start_iter):
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 637, in next
return self._process_next_batch(batch)
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 658, in _process_next_batch
raise batch.exc_type(batch.exc_msg)
TypeError: Traceback (most recent call last):
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/abc/anaconda3/envs/FCOS/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in
samples = collate_fn([dataset[i] for i in batch_indices])
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/datasets/coco.py", line 94, in getitem
img, target = self.transforms(img, target)
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/transforms/transforms.py", line 15, in call
image, target = t(image, target)
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/transforms/transforms.py", line 58, in call
size = self.get_size(image.size)
File "/home/abc/code/FCOS/maskrcnn_benchmark/data/transforms/transforms.py", line 42, in get_size
if max_original_size / min_original_size size > max_size:
TypeError: unsupported operand type(s) for : 'float' and 'range'