Open vadimus202 opened 3 years ago
We are fitting just fine in the multiclass case, it looks like, but the post
handling does not account for multiclass:
library(tidymodels)
#> Registered S3 method overwritten by 'tune':
#> method from
#> required_pkgs.model_spec parsnip
library(earth)
#> Loading required package: Formula
#> Loading required package: plotmo
#> Loading required package: plotrix
#>
#> Attaching package: 'plotrix'
#> The following object is masked from 'package:scales':
#>
#> rescale
#> Loading required package: TeachingDemos
data("scat")
scat_df <- scat %>% na.omit()
mars_spec <-
mars(prod_degree = 2) %>%
set_engine("earth") %>%
set_mode("classification")
mars_spec %>%
fit(Species ~ ., data = scat_df)
#> parsnip model object
#>
#> Fit time: 38ms
#> GLM (family binomial, link logit):
#> nulldev df dev df devratio AIC iters converged
#> bobcat 125.2612 90 68.8815 86 0.450 78.88 5 1
#> coyote 105.0010 90 48.2778 86 0.540 58.28 6 1
#> gray_fox 87.6455 90 46.0286 86 0.475 56.03 9 1
#>
#> Earth selected 5 of 31 terms, and 5 of 26 predictors
#> Termination condition: GRSq -10 at 31 terms
#> Importance: d13C, CN, Diameter, Mass, ropey, MonthAugust-unused, ...
#> Number of terms at each degree of interaction: 1 3 1
#>
#> Earth
#> GCV RSS GRSq RSq
#> bobcat 0.1693942 11.913440 0.3306862 0.4711595
#> coyote 0.1117206 7.857276 0.4372281 0.5553408
#> gray_fox 0.1258790 8.853030 0.1894912 0.3595980
#> All 0.4069939 28.623745 0.3294039 0.4701463
Created on 2021-04-21 by the reprex package (v2.0.0)
Multi-level outcomes in MARS classification
Looking at the code in
mars_data.R
, it appears that only binary classification prediction is currently supported.