tilltnet / egor

R Package for importing and analysing ego-centered-network data.
http://egor.tillt.net
GNU Affero General Public License v3.0
23 stars 4 forks source link

Routine for recovering old-style egor objects? #77

Closed mbojan closed 2 years ago

mbojan commented 2 years ago

I have some oldschool egor objects (with .alts and .aaties columns etc.). Is/was there a routine around to update those to the current design? I'd hate to rework the pipeline I have... CC @tilltnet .

tilltnet commented 2 years ago

as.egor() works for that, as longs as the object is of class nested_egor.

library(egor)
a <- as_nested_egor(egor32)
a
#> # A tibble: 32 × 8
#>    .egoID sex   age      age.years country   income .aaties           .alts     
#>     <dbl> <fct> <fct>        <int> <chr>      <dbl> <named list>      <named li>
#>  1      1 m     56 - 65         63 Australia  29930 <tibble [32 × 4]> <tibble>  
#>  2      2 m     26 - 35         33 Germany    17885 <tibble [33 × 4]> <tibble>  
#>  3      3 m     66 - 100        74 Germany    20805 <tibble [33 × 4]> <tibble>  
#>  4      4 w     18 - 25         21 Poland     29565 <tibble [27 × 4]> <tibble>  
#>  5      5 m     0 - 17           9 Germany    15330 <tibble [37 × 4]> <tibble>  
#>  6      6 m     0 - 17           6 Australia  23360 <tibble [30 × 4]> <tibble>  
#>  7      7 m     66 - 100        84 Australia  19345 <tibble [43 × 4]> <tibble>  
#>  8      8 w     66 - 100       100 Poland     35040 <tibble [32 × 4]> <tibble>  
#>  9      9 m     36 - 45         38 USA        64605 <tibble [34 × 4]> <tibble>  
#> 10     10 m     0 - 17          14 Australia  49275 <tibble [34 × 4]> <tibble>  
#> # … with 22 more rows
#> Independent Sampling design (with replacement)
#> Called via srvyr
#> Data variables: .egoID (dbl), sex (fct), age (fct), age.years (int), country
#>   (chr), income (dbl), .aaties (named list), .alts (named list)
as.egor(a)
#> # EGO data (active): 32 × 6
#>   .egoID sex   age      age.years country   income
#>    <dbl> <fct> <fct>        <int> <chr>      <dbl>
#> 1      1 m     56 - 65         63 Australia  29930
#> 2      2 m     26 - 35         33 Germany    17885
#> 3      3 m     66 - 100        74 Germany    20805
#> 4      4 w     18 - 25         21 Poland     29565
#> 5      5 m     0 - 17           9 Germany    15330
#> # ALTER data: 384 × 8
#>   .altID .egoID egoID sex   age     age.years country   income
#>    <int>  <dbl> <chr> <fct> <fct>       <int> <chr>      <dbl>
#> 1      1      1 1     m     46 - 55        48 USA        45625
#> 2      2      1 1     m     0 - 17          5 Germany    52925
#> 3      3      1 1     w     26 - 35        35 Australia  60225
#> # AATIE data: 1,056 × 4
#>   .egoID .srcID .tgtID weight
#>    <int>  <int>  <int>  <dbl>
#> 1      1      3      6  1    
#> 2      1      5      7  0.333
#> 3      1      4      7  1
mbojan commented 2 years ago

Excellent! Thanks @tilltnet