See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df["fold"] = self._get_folds(df)
Traceback (most recent call last):
File "/workspaces/etna/t.py", line 78, in <module>
metrics_df, forecast_df, fold_info_df = pipeline.backtest(
File "/workspaces/etna/etna/pipeline/base.py", line 966, in backtest
self._folds = self._run_all_folds(
File "/workspaces/etna/etna/pipeline/base.py", line 831, in _run_all_folds
pipelines = parallel(
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/joblib/parallel.py", line 1085, in __call__
if self.dispatch_one_batch(iterator):
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/joblib/parallel.py", line 901, in dispatch_one_batch
self._dispatch(tasks)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/joblib/parallel.py", line 819, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/joblib/_parallel_backends.py", line 208, in apply_async
result = ImmediateResult(func)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/joblib/_parallel_backends.py", line 597, in __init__
self.results = batch()
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/joblib/parallel.py", line 288, in __call__
return [func(*args, **kwargs)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/joblib/parallel.py", line 288, in <listcomp>
return [func(*args, **kwargs)
File "/workspaces/etna/etna/pipeline/base.py", line 678, in _fit_backtest_pipeline
pipeline.fit(ts=ts)
File "/workspaces/etna/etna/pipeline/pipeline.py", line 56, in fit
self.ts.fit_transform(self.transforms)
File "/workspaces/etna/etna/datasets/tsdataset.py", line 200, in fit_transform
transform.fit_transform(self)
File "/workspaces/etna/etna/transforms/base.py", line 145, in fit_transform
return self.fit(ts=ts).transform(ts=ts)
File "/workspaces/etna/etna/transforms/base.py", line 126, in transform
df_transformed = self._transform(df=df)
File "/workspaces/etna/etna/transforms/base.py", line 366, in _transform
seg_df = segment_transform.transform(df[segment])
File "/workspaces/etna/etna/transforms/missing_values/resample.py", line 101, in transform
df[self.out_column] = df[self.in_column].ffill() * df["distribution"]
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/pandas/core/ops/common.py", line 72, in new_method
return method(self, other)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py", line 118, in __mul__
return self._arith_method(other, operator.mul)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/pandas/core/series.py", line 6259, in _arith_method
return base.IndexOpsMixin._arith_method(self, other, op)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/pandas/core/base.py", line 1325, in _arith_method
result = ops.arithmetic_op(lvalues, rvalues, op)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/pandas/core/ops/array_ops.py", line 218, in arithmetic_op
res_values = op(left, right)
File "/home/codespace/.cache/pypoetry/virtualenvs/etna-cCDvSR3a-py3.10/lib/python3.10/site-packages/pandas/core/arrays/categorical.py", line 1639, in __array_ufunc__
raise TypeError(
TypeError: Object with dtype category cannot perform the numpy op multiply
🐛 Bug Report
ResampleWithDistributionTransform doesn't work correctly with current behaviour of HolidaysTransform
Expected behavior
Cast columns to numerical types before resampling. It should like in
_SklearnAdapter
.How To Reproduce
Environment
No response
Additional context
Checklist