titu1994 / MLSTM-FCN

Multivariate LSTM Fully Convolutional Networks for Time Series Classification
492 stars 180 forks source link

i am facing problem while running the code for wafer data set #15

Open 1789nilesh opened 4 years ago

1789nilesh commented 4 years ago

OSError Traceback (most recent call last)

in 2 model = generate_model() 3 ----> 4 train_model(model, DATASET_INDEX, dataset_prefix='wafer_', epochs=1000, batch_size=128) 5 6 evaluate_model(model, DATASET_INDEX, dataset_prefix='wafer_', batch_size=128) ~\Downloads\tcs\MLSTM-FCN-master\utils\keras_utils.py in train_model(model, dataset_id, dataset_prefix, dataset_fold_id, epochs, batch_size, val_subset, cutoff, normalize_timeseries, learning_rate, monitor, optimization_mode, compile_model) 160 161 if val_subset is not None: --> 162 X_test = X_test[:val_subset] 163 y_test = y_test[:val_subset] 164 ~\Anaconda3\envs\deeplearning\lib\site-packages\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs) 1237 steps_per_epoch=steps_per_epoch, 1238 validation_steps=validation_steps, -> 1239 validation_freq=validation_freq) 1240 1241 def evaluate(self, ~\Anaconda3\envs\deeplearning\lib\site-packages\keras\engine\training_arrays.py in fit_loop(model, fit_function, fit_inputs, out_labels, batch_size, epochs, verbose, callbacks, val_function, val_inputs, shuffle, initial_epoch, steps_per_epoch, validation_steps, validation_freq) 214 epoch_logs['val_' + l] = o 215 --> 216 callbacks.on_epoch_end(epoch, epoch_logs) 217 if callbacks.model.stop_training: 218 break ~\Anaconda3\envs\deeplearning\lib\site-packages\keras\callbacks\callbacks.py in on_epoch_end(self, epoch, logs) 150 logs = logs or {} 151 for callback in self.callbacks: --> 152 callback.on_epoch_end(epoch, logs) 153 154 def on_train_batch_begin(self, batch, logs=None): ~\Anaconda3\envs\deeplearning\lib\site-packages\keras\callbacks\callbacks.py in on_epoch_end(self, epoch, logs) 715 self.best = current 716 if self.save_weights_only: --> 717 self.model.save_weights(filepath, overwrite=True) 718 else: 719 self.model.save(filepath, overwrite=True) ~\Anaconda3\envs\deeplearning\lib\site-packages\keras\engine\saving.py in save_wrapper(obj, filepath, overwrite, *args, **kwargs) 447 os.remove(tmp_filepath) 448 else: --> 449 save_function(obj, filepath, overwrite, *args, **kwargs) 450 451 return save_wrapper ~\Anaconda3\envs\deeplearning\lib\site-packages\keras\engine\network.py in save_weights(self, filepath, overwrite) 1181 if not proceed: 1182 return -> 1183 with h5py.File(filepath, 'w') as f: 1184 saving.save_weights_to_hdf5_group(f, self.layers) 1185 f.flush() ~\Anaconda3\envs\deeplearning\lib\site-packages\h5py\_hl\files.py in __init__(self, name, mode, driver, libver, userblock_size, swmr, rdcc_nslots, rdcc_nbytes, rdcc_w0, track_order, **kwds) 406 fid = make_fid(name, mode, userblock_size, 407 fapl, fcpl=make_fcpl(track_order=track_order), --> 408 swmr=swmr) 409 410 if isinstance(libver, tuple): ~\Anaconda3\envs\deeplearning\lib\site-packages\h5py\_hl\files.py in make_fid(name, mode, userblock_size, fapl, fcpl, swmr) 177 fid = h5f.create(name, h5f.ACC_EXCL, fapl=fapl, fcpl=fcpl) 178 elif mode == 'w': --> 179 fid = h5f.create(name, h5f.ACC_TRUNC, fapl=fapl, fcpl=fcpl) 180 elif mode == 'a': 181 # Open in append mode (read/write). h5py\_objects.pyx in h5py._objects.with_phil.wrapper() h5py\_objects.pyx in h5py._objects.with_phil.wrapper() h5py\h5f.pyx in h5py.h5f.create() OSError: Unable to create file (unable to open file: name = './weights/wafer__weights.h5', errno = 2, error message = 'No such file or directory', flags = 13, o_flags = 302) ​ ​ I am getting this as error ,pls help